Особенности газообмена и теплопродукции у бычков разных генотипов в условиях долинной зоны Таджикистана

Д.М. Ахмедов, соискатель, **Т.А. Иргашев**, д.с.-х.н., Институт животноводства ТАСХН; **В.И. Косилов**, д.с.-х.н., профессор, ФГБОУ ВО Оренбургский ГАУ

Каждой породе, типу и линии животных присущи хозяйственно полезные признаки, которые могут проявляться только в определённых условиях внешней среды. Дальнейшее развитие получают животные тех пород и типов, которые наряду с хорошей приспособленностью к тем или иным экологическим условиям будут показывать лучшую продуктивность при меньших затратах труда и средств [1–6].

Изучение индивидуального развития требует глубоких исследований обмена веществ и энергии у животных с учётом породы, генотипа, возраста, условий кормления и содержания, а также природно-климатических и кормовых условий.

Исследованиями установлена тесная связь метаболических процессов в организме с уровнем газоэнергетического обмена.

В связи с этим большой интерес представляет изучение основных показателей газоэнергетического обмена, по которым можно судить об общих закономерностях функциональных преобразований в процессе роста и развития организма, адаптации животных к выращиванию в определённых экологических условиях внешней среды [7].

Исследование лёгочного дыхания и газообмена масочным методом даёт возможность судить об общем физиологическом состоянии, интенсивности окислительных процессов, теплообразовании и теплоотдаче. В регуляции дыхания принимают

участие многие органы и системы крови и тканевые механизмы с их сложной нервной и гуморальной регуляцией [8].

В связи с этим большой интерес представляет изучение основных показателей газоэнергетического обмена, по которым можно судить об общих закономерностях функциональных преобразований в процессе роста и развития организма, адаптации животных к выращиванию в определённых экологических условиях внешней среды [9].

Материал и методы исследования. Экспериментальная часть исследований проведена в производственных условиях долинной зоны Республики Таджикистан. Объектом исследования были бычки таджикского типа чёрно-пёстрой породы (I гр.), молодняк местной популяции чёрно-пёстрой породы (II гр.) и животные таджикского внутрипородного типа швицезебувидного скота (III гр.).

Интенсивность газоэнергетического обмена изучали на трёх животных из каждой группы утром до кормления за 2 смежных дня по методике А.А. Скворцовой и И.И. Хренова (1961). Сравнительное изучение газообмена и терморегуляции у животных проводили весной и поздней осенью в 15- и 21-месячном возрасте. Газоэнергетический обмен изучали в период доращивания животных весной при температуре воздуха +27–34°С и в период заключительного откорма осенью при температуре утром +1—6°С и относительной влажности 55 и 62% соответственно.

Живая масса бычков в период доращивания (15 мес.) составляла в среднем в весенний период в I гр. -319.9, во II -307.4, в III -320.8 кг, в

осенний (в возрасте 21 мес.) — 469,3; 458,9,7 и 449,6 кг соответственно.

Статистическую обработку цифрового материала выполняли методом вариационной статистики [10].

Результаты исследования. Известно, что одним из основных показателей, характеризующих уровень газообмена в организме, является количество поглощённого кислорода и выделенной углекислоты за единицу времени. Анализ полученных данных свидетельствует, что абсолютное потребление кислорода и выделение углекислого газа было обратно пропорционально относительно тех же показателей в расчёте на 1 кг живой массы за единицу времени (табл. 1, 2). Такая же закономерность установлена в отношении лёгочной вентиляции и теплопродукции. Это свидетельствует о том, что с возрастом в организме животных интенсивность окислительных процессов снижалась.

У 15-месячных бычков I и III гр. частота дыхания и пульса характеризовалась одинаковыми величинами и составляла 49,5—50,0, а у молодняка II гр. они были несколько более учащёнными, чем у сверстников I и III гр., на 9,1 и 8,0% соответственно, хотя температура тела находилась в пределах физиологической нормы.

Установлено также, что кислородный индекс у молодняка II гр. был также несколько выше, чем у бычков I и III гр. Такая реакция организма, видимо, объясняется процессами адаптации. Характерно, что бычки III гр. отличались наибольшим показателем вентиляции лёгких — 49,09 л/мин и глубины дыхания — $1624,5\,$ мл, что обусловило высокий уровень вентиляции лёгких и поглощения кислорода на 1 кг их живой массы. При этом лёгочная вентиляция в возрасте $15\,$ мес. (весной) у бычков III гр. была выше, чем у животных I гр., на $4,62\,$ л/мин $(10,4\%,\ P<0,01)$ и II гр. — на $3,79\,$ л/мин (8,42%), а глубина дыхания больше на $170,7\,$ мл $(11,74\%,\ P<0,001)$ и $190,5\,$ мл $(13,3\%,\ P<0,001)$ со-

ответственно. В то же время бычки II гр. (местная популяция чёрно-пёстрой породы) превосходили сверстников I и III гр. по потреблению кислорода на 0,33 мл/мин (6,7%) и 0,19 мл/мин (4,0%), выделению углекислоты — на 0,23 мл/мин (6,5%) и 0,01 мл/мин (0,3%), теплопродукции в час на 1 кг живой массы — на 0,199 кДж (3,5%) и III — 0,202 кДж (3,6%) соответственно.

В возрасте 21 мес. показатели газоэнергетического обмена у подопытных животных изменились, что обусловлено возрастом, сезоном года, температурой окружающей среды и их продуктивными качествами (табл. 2).

Анализ полученных данных свидетельствует, что по объёму вентиляции лёгких бычки I гр. превосходили аналогов II и III гр. соответственно на 30,7 и 35,7% (P<0,001), глубине дыхания — на 8,9 и 8,4% (P<0,05).

Показатели потребления кислорода и выделения углекислоты у них были также наибольшими. Так, их преимущество по величине первого показателя над сверстниками II гр. составляло 13,1 мл/мин (8,0%, P < 0,05) и III гр. — 19,1 мл/мин (12,2,0%, P < 0,001). Аналогичные различия установлены и по выделенной углекислоте.

Следует отметить, что бычки местной популяции чёрно-пёстрой породы (II гр.) отличались более высоким потреблением кислорода и выделением углекислоты, чем их швицезебувидные сверстники. Это обусловлено более высокой энергией роста как таджикского типа чёрно-пёстрого скота, так и местной популяции животных чёрно-пёстрой породы по сравнению с аналогами III гр.

Установлено также преимущество бычков II гр. по вентиляции лёгких, потреблению кислорода и выделению углекислоты в расчёте на 1 кг живой массы.

Характерно, что по показателям теплопродукции молодняк I—II гр. значительно превосходил бычков III гр. — на 21,2% (P<0,01) и 1,872 мДж (4,0%), а

1. Показатели газообмена и теплопродукции у 15-месячных бычков (температура воздуха +27-34°C)

	Группа									
Показатель	I		II		III					
	X±Sx	Cv	X±Sx	Cv	X±Sx	Cv				
Частота дыхания, в мин.	49,5±1,72	8,49	54,0±0,69	3,13	50,0±1,38	6,74				
Частота пульса, в мин.	$75,5\pm2,29$	7,42	81,7±1,25	3,75	$76,0\pm0,97$	3,11				
Температура тела, °С	$39,2\pm0,09$	0,57	39,0±0,12	0,71	$39,2\pm0,09$	0,63				
Вентиляция лёгких, л/мин	44,47±1,85	10,42	45,03±2,06	11,17	49,09±1,44	7,63				
Глубина дыхания, мл	$1453,8\pm64,8$	11,58	1434,0±36,0	11,45	1624,5±56,8	9,16				
Поглощение О2, мл/мин	$1471,5\pm80,0$	13,52	1515,5±67,6	11,19	1516,8±35,2	5,74				
Выделено СО ₂ , мл/мин	$1046,1\pm60,8$	13,97	1097,0±52,3	12,2	1120,0±28,8	6,52				
Кислородный индекс	33,47±1,43	10,46	34,17±2,03	14,56	$33,36\pm20,59$	4,36				
Дыхательный коэффициент	$0,71\pm0,02$	6,48	$0,71\pm0,01$	2,54	$0,74\pm0,01$	1,91				
На 1 кг живой массы:										
Вентиляция лёгких, мл/мин	139,0±5,8	10,42	146,5±6,7	11,17	147,2±4,5	7,63				
Поглощение О2, мл/мин	$4,60\pm0,25$	13,52	4,93±0,22	11,19	$4,74\pm0,11$	5,74				
Выделено СО ₂ , мл/мин	$3,27\pm0,19$	13,97	3,51±0,17	12,20	$3,50\pm0,09$	6,52				
Теплопродукция в сутки, МДж	43,272		43,056		43,248					
В час на гол., МДж	1,803		1,794		1,802					
В час на 1 кг живой массы, КДж	5,636±0,267	11,6	5,835±0,269	11,31	5,633±0,133	5,99				

	Группа									
Показатель	I		II		III					
	X±Sx	Cv	X±Sx	Cv	X±Sx	Cv				
Частота дыхания, в мин.	22,7±0,79	8,56	20,3±0,89	10,84	21,3±0,4	4,47				
Частота пульса, в мин.	81,8±2,3	6,88	$79,8\pm1,79$	5,5	81,7±2,6	7,8				
Температура тела, °С	39,0±0,08	0,50	$38,7\pm0,06$	0,36	39,1±0,08	0,52				
Вентиляция лёгких, л/мин	53,58±2,81	12,87	$40,99\pm2,75$	16,29	39,49±9,1	12,5				
Глубина дыхания, мл	2628,8±53,6	5,04	2413,2±68,4	6,91	2424,4±110,2	11,33				
Поглощение О2, мл/мин	1755,2±98,5	13,68	1624,5±59,7	8,83	1564,1±89,9	14,35				
Выделено СО ₂ , мл/мин	1375,0±61,0	11,28	$1266,6\pm64,2$	12,43	1209,4±71,9	14,25				
Кислородный индекс	36,95±2,04	13,54	$38,42\pm1,01$	6,47	39,53±0,92	5,73				
Дыхательный коэффициент	0,79±0,01	3,23	$0,78\pm0,02$	6,76	$0,77\pm0,02$	2,03				
На 1 кг живой массы:										
Вентиляция легких, мл/мин	114,17±6,0	12,87	$89,33\pm6,0$	16,29	87,83±4,5	12,5				
Поглощение О2, мл/мин	3,74±0,21	13,68	$3,54\pm0,13$	8,83	3,48±0,20	14,35				
Выделено СО ₂ , мл/мин	2,93±0,13	11,23	$2,76\pm0,14$	12,43	2,69±0,16	14,25				
Теплопродукция в сут., мДж	50,688		46,872		45,000					
В час на гол., мДж	2,112		1,953		1,875					
В час на 1 кг живой массы, кДж	4,501±0,24	13,18	$4,256\pm0,16$	9,16	4,171±0,24	14,22				

2. Показатели газообмена и теплопродукции бычков в возрасте 21 мес. (температура воздуха +1-6°C)

по теплопродукции в час на гол. — на 0,237 (21,2% P<0,01) и 0,78 мДж (4,0%) соответственно.

Вывод. Анализ показателей газообмена и теплопродукции показал, что у подопытных животных не наблюдалось каких-либо отклонений от физической нормы. Имеющее место повышение интенсивности газообмена у бычков всех генотипов в 21-месячном возрасте обусловлено увеличением затрат энергии на обеспечение жизненных функций организма, прежде всего их высокой интенсивностью прироста живой массы в этот период. У бычков разных популяций в период доращивания в весенне-летний период года уровень газоэнергетическго обмена и показатели терморегуляции были достоверно выше, чем в осенне-зимний период заключительного откорма.

Литература

- 1. Косилов В.И., Мироненко С.Й., Салихов А.А. и др. Рациональное использование генетических ресурсов красного степного скота для производства говядины при чистопородном разведении и скрещивании. М., 2010. 452 с.
- 2. Иргашев Т.А. Мясная продуктивность и биологические особенности бычков таджикского типа чёрно-пёстрой породы: монография. Душанбе: Маориф, 2015. 192 с.

- 3. Шевхужев А., Мамбетов М., Бостанов А. Откорм бычков разных генотипов при промышленной технологии // Молочное и мясное скотоводство. 2008. № 6. С. 8–10.
- 4. Косилов В.И., Заикин Г.Л., Муфазалов Э.Ф., Мироненко С.И. Мясные качества чёрно-пёстрого и симментальского скота разных генотипов. Оренбург, 2006. 196 с.
- Никулин В.Н., Мустафин Р.З. Эффективность применения пробиотика лактомикроцикол при выращивании телят красной степной породы // Известия Оренбургского государственного аграрного университета. 2008. № 3 (19). С. 210–212.
- Косилов В.И., Мазуровский Л.З., Салихов А.А. Эффективность двух-трёхпородного скрещивания скота на Южном Урале // Молочное и мясное скотоводство. 1997. № 7. С. 14—17.
- Иргашев Т.А. Особенности адаптации животных в условиях долинной зоны Северного Таджикистана // Роль аграрной науки в современном обществе: матер. междунар. научпрактич. конф., посвящ. 2200-летию Кыргызской государственности: сборник научных трудов. ЦАНиКС: Вып. 1. Бишкек, 2003. С. 162–163.
- 8. Крылов В.Н., Косилов В.И. Показатели крови молодняка казахской белоголовой породы и её помесей со светлой аквитанской // Известия Оренбургского государственного аграрного университета. 2009. № 2 (22). С. 121–125.
- 9. Иргашев Т.А. Влияние генотипа на газоэнергетический обмен у бычков в горных условиях // Вестник Таджикского национального университета: серия естественных наук. 2013. № 1/3 (110). Сино. С. 153–155.
- 10. Антонова В.С., Топурия Г.М., Косилов В.И. Методология научных исследований в животноводстве. Оренбург, 2011. 246 с.