Гематологические показатели чистопородных и помесных бычков

В.И. Косилов, д.с.-х.н., профессор, **С.С. Жаймышева**, к.с.-х.н., **В.М. Мешков**, д.в.н., профессор, ФГБОУ ВО Оренбургский ГАУ

В большинстве регионов страны производство говядины осуществляется за счёт разведения скота молочных и комбинированных пород. В ближайшее время они останутся основным источником увеличения ресурсов мяса. В то же время важным резервом увеличения производства высококачественной говядины является развитие специализированного мясного скотоводства. В этом плане значительный интерес представляет использование в мясном скотоводстве генетического потенциала симментальского скота и лимузинов как при чистопородном разведении, так и при скрещивании [1, 2].

Материал и методы исследования. Большое внимание при производстве говядины в последнее время уделяется использованию ресурсосберегающих технологий, которые позволяют добиться снижения затрат и таким образом улучшить показатели отрасли специализированного мясного скотоводства.

Находясь в тех или иных условиях содержания, организм животного в процессе роста и развития постоянно испытывает влияние различных факторов внешней среды. Физиологические функции животного претерпевают изменения с возрастом и под действием многих других факторов. Важными признаками, характеризующими физиологическое состояние животных, являются показатели крови [3-10]. В этой связи были изучены гематологические показатели бычков симментальской (І гр.) и лимузинской (II гр.) пород и их помесей разных поколений: 1/2 лимузин × 1/2 симментальская (III гр. — 1-е поколение), 3/4 лимузин $\times 1/4$ симментальская (IV гр. — 2-е поколение), 7/8 лимузин \times 1/8 симментальская (V гр. — 3-е поколение). Молодняк содержался по технологии мясного скотоводства.

Результаты исследования. Состав крови отличается относительным постоянством, что обеспечивает сохранение видовых, породных и индивидуальных особенностей конституции животных. В то же время он изменяется под влиянием различных факторов, генетических и сезонных (табл. 1).

Установлено, что содержание эритроцитов в крови у бычков симментальской породы повысилось в летний период по сравнению с зимним на $2.78 \cdot 10^{12}/\pi$ (55,8%), лимузинских сверстников — на $2.4 \cdot 10^{12}/\pi$ (41,7%), помесей 1-го поколения — на $2.53 \cdot 10^{12}/\pi$ (38,4%), помесей 2-го поколения — на $2.68 \cdot 10^{12}/\pi$ (46,9%), помесей 3-го поколения — на $3.20 \cdot 10^{12}/\pi$ (60,6%). Повышение уровня гемоглобина составляло соответственно 9,33 г/л (8,2%); 9,00 (6,9%); 7,60 (5,7%); 17,33 (13,9%); 21,33 г/л (17,8%), снижение насыщенности крови лейкоцитами было в пределах $0.65-2.82 \cdot 10/\pi$ (9,3–50,6%).

По насыщенности крови гемоглобином отмечено преимущество лимузинов и помесей над симменталами как летом, так и в зимний период. Летом это превосходство составляло 14,67-18,67 г/л (P < 0,001), а зимой -6,0-19,0 г/л (P < 0,001). Аналогичная закономерность установлена и по содержанию эритроцитов. Межгрупповые различия по содержанию лейкоцитов в крови были несущественны и статистически недостоверны.

В то же время изменение содержания форменных элементов и гемоглобина в крови не выходило за пределы физиологической нормы и было обусловлено напряжением физиологических функций в организме растущего молодняка. Анализ полученных нами данных свидетельствует об определённых межгрупповых различиях как по содержанию общего белка в сыворотке крови, так и отдельных его фракций (табл. 2).

В летний период минимальным уровнем общего белка характеризовались бычки лимузинской породы и помесные сверстники 1-го и 3-го поколений. У симменталов и помесей 2-го поколения этот показатель в анализируемый период года был несколько выше. В зимний период установлена противоположная закономерность. Содержание общего белка в сыворотке крови у бычков I и IV гр. повысилось в летний период на 5,40 и 2,01 г/л, или на 7,9 и 2,9%, по сравнению с зимним. У молодняка других групп отмечалось недостоверное снижение изучаемого показателя.

Основными видами белков, принимающих участие в обмене веществ и регулирующих этот

1. Показатели крови бычков ($X \pm Sx$	Показ	тели кро	ви бычко	OB $(X \pm Sx)$
---	-------	----------	----------	-----------------

Показатель	Сезон	Группа					
Показатель	года	I	II	III	IV	V	
Эритроциты, 1012/л	зима	4,98±0,51	5,76±0,02	6,59±0,25	5,71±0,43	5,28±0,51	
	лето	7,76±0,09	8,16±0,29	9,12±0,61	8,39±0,24	8,45±0,28	
Гемоглобин, г/л	зима	114,00±9,24	129,33±6,77	133,00±2,91	124,67±5,9	120,00±7,57	
темоглооин, тул	лето	123,33±0,71	128,00±2,51	140,60±10,09	$142,00\pm6,1$	141,33±0,71	
Лейкоциты, 10 ⁹ /л	зима	7,97±0,52	8,07±0,88	7,63±2,17	8,39±14,03	7,77±1,18	
	лето	6,78±0,36	$6,02\pm0,43$	6,98±0,86	$5,57\pm0,32$	6,81±0,40	

	Показатель							
Группа	Группа общий белок	альбумин	глобулины					
			всего	α	β	γ		
Зима								
I	68,40±0,06	$30,90\pm0,25$	37,50±0,41	$12,30\pm0,47$	9,91±0,18	15,29±0,69		
II	72,50±1,66	$34,14\pm2,10$	38,36±2,94	12,12±0,98	9,92±0,77	16,32±2,11		
III	76,97±4,98	$35,69\pm0,81$	41,28±3,25	11,64±0,29	12,29±0,62	17,35±3,43		
IV	69,83±0,53	$29,85\pm0,28$	39,98±0,80	11,70±0,46	$11,82\pm0,24$	16,46±0,94		
V	72,87±1,62	31,58±1,26	41,29±1,78	10,95±0,94	12,81±0,31	17,53±0,76		
Лето								
I	73,80±2,00	34,21±0,94	39,59±2,94	13,31±1,37	11,41±0,78	14,87±1,18		
II	70,96±3,47	$33,13\pm0,79$	37,83±3,04	14,53±0,54	10,61±0,99	12,69±1,67		
III	70,49±3,18	$33,08\pm0,69$	37,41±2,88	12,78±0,84	9,28±0,10	15,35±2,08		
IV	71,84±1,52	$32,70\pm1,30$	39,13±0,77	12,28±1,32	11,17±0,81	15,69±0,74		
V	68,00±3,90	$31,73\pm3,30$	36,27±1,03	10,93±0,52	10,61±1,02	14,73±0,48		

2. Белковый состав сыворотки крови бычков, г/л $(X \pm Sx)$

3. Динамика активности аминотрансфераз сыворотки крови молодняка, ммоль/ \mathbf{u} - \mathbf{n} ($\mathbf{x} \pm \mathbf{s} \mathbf{x}$)

Пока-	Сезон	Группа					
затель	года	I	II	III	IV	V	
ACT	зима	1,50±	1,42±	1,78±	1,45±	1,45±	
		0,14	0,08	0,05	0,11	0,15	
	лето	1,89±	1,68±	1,90±	1,83±	2,13±	
		0,07	0,07	0,05	0,03	0,15	
АЛТ	зима	0,61±	0,58±	0,68±	$0,67\pm$	$0,60\pm$	
		0,06	0,09	0,12	0,03	0,08	
	лето	0,98±	0,93±	1,06±	1,09±	1,14±	
		0,11	0,11	0,03	0,03	0,02	

процесс, являются альбумины. Изменение содержания альбумина в сыворотке крови бычков подопытных групп носило аналогичный характер изменению содержания общего белка.

Снижение его уровня в летний период отмечалось у животных лимузинской породы и у помесей 1-го поколения, оно составляло 1,01 (3,1%) и 2,61 г/л (7,9%) соответственно. Повышение содержания альбумина летом наблюдалось у симментальских бычков I гр. и у помесей IV и V гр. по сравнению с зимним периодом на 3,31 (10,7%); 2,85 (9,5%) и 0,5 г/л (0,5%). При этом межгрупповые различия, как по уровню общего белка, так и альбуминов, были несущественны и статистически недостоверны.

Изменение содержания общего количества глобулинов в сыворотке крови бычков разных генотипов было неодинаковым. Так, в летний период по сравнению с зимним их количество у бычков симментальской породы повысилось на $2.09 \, \text{г/л} (5.6\%)$, а у лимузинов и помесей снизилось на $0.53 \, \text{г/л} (1.4\%)$ и на $0.85-5.02 \, \text{г/л} (2.2-13.8\%)$.

Анализ динамики активности трансаминаз свидетельствует об определённых межгрупповых различиях (табл. 3). При этом установлено, что с возрастом независимо от породной принадлежности этот показатель повышался у бычков всех групп в летний период. Характерно, что в этот период молодняк отличался наиболее высокой интенсивностью роста за всё время выращивания.

Процесс повышения активности аминотрансфераз сыворотки крови у помесных бычков про-

исходил более интенсивно, чем у чистопородного молодняка. Так, в летний период по сравнению с зимним активность АСТ у чистопородных бычков I и II гр. повысилась на 0,26-0,39 ммоль/ч·л (18,3-26,0%) и у помесей — на 0,12-0,68 ммоль/ч·л (6,7-46,9%). Аналогичная закономерность наблюдалась по динамике активности аланинаминотрансферазы.

Вывод. Все морфологические и биохимические показатели крови бычков хотя и отличались достаточно высокой лабильностью, но во всех случаях не выходили за пределы физиологической нормы.

Литература

- Косилов В.И. Эффективность использования симментальского и лимузинского скота для производства говядины при чистопородном разведении и скрещивании / В.И. Косилов, А.И. Кувшинов, Э.Ф. Муфазалов, С.С. Нуржанова, С.И. Мироненко. Оренбург, 2005. 246 с.
- Мироненко. С.И., Косилов В.И. Мясные качества бычков симментальской породы и её двух-трёхпородных помесей // Известия Оренбургского государственного аграрного университета 2008 № 1 (17) С. 73–76
- верситета. 2008. № 1 (17). С. 73–76.

 3. Косилов В.И., Мироненко С.И., Жукова О.А. Гематологические показатели тёлок различных генотипов на Южном Урале // Вестник мясного скотоводства. 2009. Т. 1. № 62. С. 150–158.
- Литвинов К.С., Косилов В.И. Гематологические показатели молодняка красной степной породы // Вестник мясного скотоводства. 2008. Т. 61. С. 148–154.
- Косилов В.И., Мироненко С.И., Андриенко Д.А. Показатели крови крупного рогатого скота разных направлений продуктивности в условиях Южного Урала // Известия Оренбургского государственного аграрного университета. 2014. № 5 (49). С. 90–93.
- Никулин В.Н., Бабичева И.А., Мустафин Р.З. Закономерности изменения гематологических показателей молодняка крупного рогатого скота под воздействием кормовых добавок и микробных препаратов // Известия Оренбургского государственного аграрного университета. 2015. № 5 (55). С. 146–148.
- Губайдулин Н.М. Гематологические показатели коровпервотёлок бестужевской породы при использовании алюмосиликата глауконита / Н.М. Губайдулин, Р.С. Зайнуков, И.В. Миронова, Х.Х. Тагиров // Известия Оренбургского государственного аграрного университета. 2008. № 17 (1). С. 111–113.
- Егорова И.В., Харламов А.В. Морфологические и биохимические показатели крови бычков различных пород при содержании на откормочной площадке // Инновации в формировании конкурентоспособного сельскохозяйственного производства. Оренбург. 2011. С. 58–60.
- Батанов С.Д., Старостина О.С. Состав крови и его связь с молочной продуктивностью у коров // Зоотехния. 2005. № 2. С. 18–19.
- Крылов В.Н., Косилов В.И. Показатели крови молодняка казахской белоголовой породы и её помесей со светлойаквитанской // Известия Оренбургского государственного аграрного университета. 2009. № 22 (2). С. 121–125.