Влияние систематического внесения различных доз минеральных удобрений на урожайность яровой мягкой пшеницы

В.И. Елисеев. к.с.-х.н.. ФГБНУ Оренбургский НИИСХ

Оренбургская область является одним из ведущих регионов по производству зерна яровой мягкой пшеницы. В настоящее время высокую урожайность яровой мягкой пшеницы возможно получать за счёт выведения и внедрения в производство новых сортов с высокой потенциальной продуктивностью, а также путём совершенствования агротехники, прежде всего научно обоснованного применения минеральных удобрений.

В Оренбуржье роль минеральных удобрений в повышении урожайности яровой мягкой пшеницы изучалась А.В. Ряховским и другими исследователями [1-3]. В связи с тем, что все данные были получены на базе краткосрочных опытов, сложно было установить влияние видов, доз и сочетаний различных элементов питания на урожайность яровой мягкой пшеницы при многолетнем периоде их использования, а также насколько оправданы и верны прежние рекомендации производству в годы различные по погодным условиям.

Материал и методы исследования. Для ответов на эти вопросы в Оренбургском НИИСХ в 1972 г. был заложен многолетний стационарный опыт. Исследование на нём ведётся непрерывно, вплоть до настоящего времени. Отсюда следуют актуальность работы и её значимость для земледельцев области.

Экспериментальное исследование проводили в центральной части Оренбургской области на базе ОПХ «Урожайное» Оренбургского НИИСХ в пятипольном зернопаровом севообороте по схеме, которая включала следующие варианты применения удобрений:

J I	
1) без удобрений	8) $N_2P_1K_1$;
(контроль);	9) $N_{0,5}P_1K_1$;
2) N_1P_1 ;	10) $N_1P_2K_1$;
3) N_1K_1 ;	11) $N_1 P_{0,5} K_1$;
4) P_1K_1 ;	12) $N_2P_3K_2$;
5) $N_1P_1K_1$;	13) $N_3P_2K_2$;
6) $N_2P_2K_2$;	14) P_2K_2 в запас
7) $N_{0.5}P_{0.5}K_{0.5}$:	№ ежеголно

Чередование культур в севообороте было: пар, озимая рожь, яровая твёрдая пшеница, просо, яровая мягкая пшеница.

Почвы опытных участков представлены чернозёмом обыкновенным среднемощным, тяжело суглинистым. Содержанием гумуса в слое 0-30 см составляет 4,74-5,5%, подвижного фосфора -2,3-2,8 мг, обменного калия -26,7-38,4 мг на 100 г почвы.

Повторность вариантов 4-кратная, общая площадь делянки — $450 \text{ м} (7.5 \times 60 \text{ м})$, учётная — 300 м^2 .

Дозы удобрений и их сочетаний на 1 га составляли: для озимой ржи - 40 кг азота, 60 кг фосфора, 30 кг калия; для твёрдой пшеницы — соответственно 40 - 40 - 20 кг; для яровой мягкой пшеницы -30-30-20 кг, просо использовало последействие удобрений. Под вспашку вносили мочевину, двойной гранулированный суперфосфат и хлористый калий.

Применяли в опыте общепринятую для центральной зоны области агротехнику.

Наблюдения и анализ данных в опыте проводили по методике Б.А. Доспехова [4].

В работе представлены результаты исследования с 4-й по 7-ю ротации севооборота (с 1991 по 2010 г.).

Результаты исследования. Результаты наших исследований в длительном стационарном опыте по изучению действия различных доз и основного удобрения показали, что эффективность действия удобрений на урожай яровой мягкой пшеницы зависела от метеорологических условий года и от внесения различных доз и соотношений минеральных удобрений. В засушливые 1995, 1998, 2003, 2005, 2010 гг. прибавка урожая зерна яровой мягкой пшеницы была ниже, чем в благоприятные годы. По результатам нашего исследования в 4-й ротации севооборота (1991-1995 гг.) установлено, что среди 13 вариантов применения удобрений в 1991 г. достоверно превысили контроль 12, в 1992 г. – все 13 вариантов. Аналогичные результаты получены в 1993 и 1995 гг.

По условиям увлажнения в периоды вегетации яровой мягкой пшеницы Саратовская 42 в 4-й ротации севооборота 1991 и 1992 гг. можно отнести к благоприятным годам, а 1993 и 1995 гг. – к засушливым. В благоприятные годы установлена высокая эффективность удобрений, а уровень прибавки урожая яровой пшеницы от удобрений был более высоким, чем в засушливые годы.

В среднем за 4-ю ротацию севооборота парные сочетания элементов питания $N_{30}P_{30}$; $N_{30}K_{20}$; $P_{30}K_{20}$ обеспечили следующий уровень урожайности яровой пшеницы: 16,6; 15,6; 15,1 ц/га соответственно. Прибавки урожая на этих вариантах составляли соответственно 2,6; 1,6; 1,1 ц/га, или 18,6; 11,4; 7,8%. Наибольший уровень урожайности яровой пшеницы получен на варианте с применением $N_{30}P_{30}K_{20}$ и составил 17,4 ц/га. Получена прибавка урожая 3,4 ц/га, или 24,3% (табл.).

К варианту с фоном питания $N_{30}P_{30}K_{20}$ приблизились по уровню урожайности варианты с внесением $N_{15}P_{30}K_{20}$; $N_{30}P_{15}K_{10}$ и $N_{60}P_{260}K_{140}$. Урожайность на этих вариантах была одинаковой и составляла 17,2 ц/га. Прибавка урожая, полученная

Вариант	Ротация севооборота			Сполияя	Пиледовия	
	4-я	5-я	6-я	7-я	Средняя	Прибавка
1) контроль	14,0	10,8	9,5	12,5	11,7	0
$(2) N_{30}P_{30}$	16,6	14,6	12,4	15,5	14,8	3,1
$3) N_{30}K_{20}$	15,6	13,0	11,7	16,3	14,2	2,5
$4) P_{30}K_{20}$	15,1	13,7	11,2	16,0	14,0	2,3
$5) N_{30}P_{30}K_{20}$	17,4	13,6	13,3	20,2	16,1	4,4
6) $N_{60}P_{60}K_{40}$	16,7	12,9	12,4	16,0	14,5	2,8
7) $N_{15}P_{15}K_{10}$	16,8	13,1	12,3	17,1	14,8	3,1
$8) N_{60}P_{30}K_{20}$	16,8	14,3	13,0	17,4	15,4	3,7
9) $N_{15}P_{30}K_{20}$	17,2	14,0	12,0	15,1	14,6	2,9
10) $N_{30}P_{60}K_{20}$	16,4	13,6	13,0	16,7	14,9	3,2
11) $N_{30}P_{15}K_{20}$	17,2	13,8	11,1	15,8	14,5	2,8
12) $N_{60}P_{90}K_{40}$	16,9	13,2	12,9	19,1	15,5	3,8
13) $N_{90}P_{60}K_{40}$	16,9	14,2	12,2	17,0	15,1	3,4
14) $N_{60}P_{320}K_{140}$	17,2	13,6	12,6	16,9	15,1	3,4

Урожайность яровой мягкой пшеницы на разных фонах питания, ц с 1 га

от внесения удобрений, была равна 3,2 ц/га, или 22,8% к контролю (без удобрений).

В целом за 5-ю ротацию севооборота парные сочетания элементов питания обеспечили следующий уровень урожайности: $N_{30}P_{30}-14,6$ ц/га, $N_{30}K_{20}-13,0$ ц/га, $P_{30}K_{20}-13,7$ ц/га.

На варианте с использованием $N_{30}P_{30}K_{20}$ урожайность составляла 13,6 ц/га, прибавка урожая — 2,8 ц/га, или 25,9%. Наиболее высокую урожайность яровой мягкой пшеницы в 5-й ротации обеспечили варианты: $N_{30}P_{30}$ (+3,8 ц/га, или 35,2%), $N_{60}P_{30}K_{20}$ (+3,5 ц/га, или 32,4%), $N_{90}P_{60}K_{40}$ (+3,4 ц/га, или 31,5%), $N_{15}P_{30}K_{20}$ (3,2 ц/га, или 29,6%).

В среднем за 6-ю ротацию севооборота наиболее высокая урожайность яровой мягкой пшеницы по сравнению с контролем была получена за счёт внесения $N_{30}P_{30}K_{20}$ (+3,8 ц с 1 га, или 40,0%), $N_{60}P_{30}K_{20}$ (+3,5 ц с 1 га, или 36,8%), $N_{30}P_{60}K_{20}$ (+3,5 ц с 1 га, или 36,8%), $N_{60}P_{90}K_{40}$ (+3,4 ц/га, или 35,8%).

Анализ урожайности яровой мягкой пшеницы сорта Учитель в среднем за 7-ю ротацию севооборота показал, что из парных сочетаний элементов питания наибольшая урожайность яровой мягкой пшеницы получена на вариантах, где применяли $N_{30}K_{20}$ и $P_{30}K_{20}$ — соответственно 16,3 и 16,0 ц с 1 га, прибавка урожая на этих вариантах была равна соответственно 3,8 и 3,5 ц/га, или 30,4 и 28,0%. На вариантах с применением $N_{30}P_{30}$ урожайность яровой пшеницы составляла 15,5 ц/га, прибавка урожая -3,0 ц/га, или 24,0%. При использовании полного минерального удобрения в дозе $N_{30}P_{30}K_{20}$ урожайность яровой мягкой пшеницы достигла 20,2 ц/га, а прибавка урожая -7,7 ц/га, или 61,6% по сравнению с контролем. При внесении двойной дозы полного минерального удобрения на варианте $N_{60}P_{60}K_{40}$ урожайность не увеличилась по сравнению с вариантом $N_{30}P_{30}K_{20}$ и составляла всего 16,0 ц/га, прибавка урожая — 3,5 ц/га, или 28,0%. На варианте с фоном питания $N_{15}P_{15}K_{10}$ урожайность яровой пшеницы была несколько больше —17,1 ц/га, а прибавка урожая составила 4,6 ц/га, или 36,8%.

Наиболее высокую урожайность яровой мягкой пшеницы сорта Учитель в 7-й ротации севооборота обеспечили варианты с применением сочетаний удобрений $N_{30}P_{30}K_{20}$ (+7,7 ц/га, или 61,6% к контролю), $N_{60}P_{90}K_{40}$ (+6,6 ц/га, или 52,8% к контролю), $N_{60}P_{30}K_{20}$ (+4,9 ц/га, или 39,2% к контролю).

Вывод. В среднем за четыре ротации севооборота среди изученных фонов минерального питания наибольшей урожайностью выделились следующие варианты: $N_{30}P_{30}K_{20}$ (16,1 ц/га, +4,4 ц/га, или 37,6%), $N_{60}P_{30}K_{20}$ (15,4 ц/га, +3,7 ц/га, или 31,6%), $N_{60}P_{90}K_{40}$ (15,5 ц/га, +3,8 ц/га, или 32,5%).

Таким образом, по средним данным за четыре ротации севооборота наибольший уровень урожайности яровой мягкой пшеницы обеспечивает полное минеральное удобрение в дозе $N_{30}P_{30}K_{20}$.

Литература

- Ряховский А.В., Батурин Й.А., Березнёв А.П. Агрономическая химия в приложении к условиям степных районов Российской Федерации. Оренбург, 2004. 283 с.
- Байкасенов Р.К. Влияние средств химизации на выживаемость растений, урожайность и качество зерна яровой мягкой пшеницы сорта Учитель в условиях центральной зоны Оренбургской области // Известия Оренбургского государственного аграрного университета. 2016. № 1 (57). С. 21—23
- 3. Митрофанов Д.В., Кафтан Ю.В. Повышение продуктивности шестипольных севооборотов в степной зоне Южного Урала // Известия Оренбургского государственного аграрного университета. 2016. № 4 (60). С. 8–11.
- 4. Доспехов Б.А. Методика полевого опыта. М.: Агропромиздат, 1985. 351 с.