Динамика роста бурого швицкого и калмыцкого молодняка в условиях отгонно-горного скотоводства

А.Ф. Шевхужев, д.с.-х.н., профессор, ФГБОУ ВО Санкт-Петербургский ГАУ; **М.Б. Улимбашев**, д.с.-х.н., **Р.А. Улимбашева**, соискатель, ФГБОУ ВО Кабардино-Балкарский ГАУ

Потребность населения в продуктах питания можно удовлетворить лишь путём повышения продуктивности животных при одновременном улучшении условий их кормления и содержания и совершенствовании методов племенной работы, способствующей повышению генетического потенциала скота. При этом создание благоприятных условий кормления и содержания даёт возможность повысить уровень продуктивности животных до необходимой кондиции, используя их генотип в нужном направлении путём целенаправленной селекционной работы [1].

При решении проблемы увеличения производства говядины, повышения её качества и снижения себестоимости продукции необходимо учитывать природно-климатические, хозяйственно-экономические и технологические условия.

Уникальные качества калмыцкой породы крупного рогатого скота — выносливость, неприхотливость к кормам, способность при обильном кормлении интенсивно набирать живую массу и др. — способствовали её распространению во многих регионах России. Из всех отечественных мясных пород крупного рогатого скота она является наиболее многочисленной [2—8].

Наибольшее распространение в хозяйствах предгорной зоны Кабардино-Балкарской Республики получила бурая швицкая порода, животные которой достаточно хорошо приспособлены к эколого-кормовым условиям региона. Скот этой породы, как в республике в целом, так и в отдельном хозяйстве, выращивают с использованием технологии молочного скотоводства, поэтому изучение их роста, развития и последующей мясной продуктивности по разным технологиям, равно как и завезённого калмыцкого скота, несомненно, определяет теоретический и практический интерес, а также научную новизну исследования.

В связи с интродукцией в последние десятилетия животных калмыцкой породы в сельско-хозяйственные предприятия региона возникла необходимость изучения её продуктивных качеств в сравнении с районированной швицкой породой в разных технологических условиях, что определило актуальность исследования.

Цель исследования — изучить рост бурого швицкого и калмыцкого скота, находящегося на отгонно-горном содержании, при использовании разных технологий, принятых в молочном и мясном скотоводстве.

Материал и методы исследования. Для достижения указанной цели в условиях ООО «Дарган», расположенного в предгорной зоне Кабардино-Балкарской Республики, были сформированы четыре группы бычков по 15 гол. в каждой. Бычков калмыцкой породы из І гр. и сверстников бурой швицкой породы из ІІ гр. выращивали по технологии производства говядины, принятой в мясном скотоводстве. Молодняк калмыцкой породы из ІІ гр. и животных бурой швицкой породы из ІV гр. выращивали по технологии молочного скотоводства.

Бычки подопытных групп с рождения до 8-месячного возраста находились в хозяйстве, с 9 до 14 мес. — на пастбище, с 15 до 18 мес. — в скотных дворах при беспривязном содержании.

Весовой рост подопытного молодняка учитывали путём проведения ежемесячных взвешиваний, на основании чего рассчитывали среднесуточный прирост живой массы и относительную скорость роста.

Рационы для бычков составляли в соответствии с нормами ВИЖ из кормов, имеющихся в хозяйстве. Учёт съеденных кормов проводили ежемесячно в течение двух смежных суток по количеству заданных кормов и их остатков, а количество съеденной пастбищной травы рассчитывали методом обратного пересчёта по методике СибНИПТИЖ СО РАСХН (1992).

При составлении рационов учитывали питательность кормов по результатам их химического анализа, который проводили в лаборатории ФГБУ САС «Кабардино-Балкарская» по методике П.Т. Лебедева и А.Т. Усовича (1976).

Цифровой материал обрабатывали методом вариационной статистики [9].

Результаты исследования. Исследование показало различия в реакции бычков калмыцкой и бурой швицкой пород на разные технологии выращивания в молочный период, что обусловило неодинаковую динамику их живой массы (табл. 1).

По живой массе групповые различия между новорождёнными бычками калмыцкой породы не проявились, аналогично и швицы характеризовались практически одинаковыми значениями массы в период новорождённости. Вместе с тем при сравнении молодняка разных пород видно превосходство по живой массе при рождении животных бурой швицкой породы в среднем на 8,9–9,4 кг (Р>0,999).

В 3-месячном возрасте бычки калмыцкой и бурой швицкой пород, выращенные как с использованием ручной выпойки, так и под коровами-кормилицами, между собой по живой массе практически не различались. В то же время породные раз-

личия по анализируемому показателю были в пользу молодняка швицкой породы, составив по технологии, принятой в мясном скотоводстве, 16,5 кг (P>0,999), в молочном скотоводстве — 12,9 кг (P>0,999).

К концу молочного периода различия по живой массе между калмыцкими бычками, выращенными по разным технологиям, составили $10.5~\rm kr$ (P>0,95), бурыми швицкими — $14.9~\rm kr$ (P>0,99) в пользу молодняка, находившегося под кормилицами. Аналогичная тенденция наблюдалась в последующие возрастные периоды выращивания. К концу выращивания живая масса скота калмыцкой породы достигла $30.2~\rm kr$ (P>0,999), бурой швицкой породы — $29.9~\rm kr$ (P>0,999).

Следует отметить преимущество по живой массе в 18-месячном возрасте бычков швицкой породы над сверстниками калмыцкой породы при использовании технологии производства говядины, принятой в мясном скотоводстве, составившие $35.1 \ \mathrm{kr} \ (P>0.999)$, по технологии молочного скотоводства — $35.4 \ \mathrm{kr} \ (P>0.999)$.

Следовательно, использование элементов технологии производства говядины, принятых в мясном скотоводстве, способствует достижению бычками анализируемых пород более высокой живой массы

1. Динамика живой массы бычков при разных технологиях выращивания в молочный период $(X\pm Sx)$

	Порода					
Возраст, мес.	калмі	ыцкая	бурая швицкая			
	Группа					
	I	III	II	IV		
Новорож-	20,2±0,2	19,9±0,2	29,3±0,3	29,1±0,3		
дённые						
3	90,6±1,8	$89,5\pm2,3$	107,1±2,4	102,4±2,1		
7	186,8±3,0	176,3±3,6	212,7±4,0	197,8±3,5		
9	229,0±4,2	215,6±4,9	258,3±5,4	238,7±4,7		
12	312,3±4,6	296,0±5,0	344,0±5,7	320,9±5,3		
15	394,5±4,9	372,4±5,2	427,7±5,6	402,1±5,0		
18	476,2±4,8	446,0±5,2	511,3±5,7	481,4±4,9		

2. Среднесуточный прирост живой массы бычков при разных технологиях выращивания в молочный период, (X±Sx)

	Порода					
Возрастной	калмі	ыцкая	бурая швицкая			
период, мес.	Группа					
	I	III	II	IV		
Новорож-	782±12,4	773±11,8	864±13,9	814±12,7		
дённые – 3						
3–7	802±14,2	723±12,2	880±15,0	795±13,9		
7–9	703±10,7	655±8,9	760±11,8	682±11,1		
9–12	925±12,0	893±10,2	952±13,5	913±12,9		
12–15	913±11,2	849±9,5	930±12,3	902±10,8		
15–18	908±10,4	818±8,8	929±11,0	881±9,8		
Новорож-	834±13,0	779±11,3	881±14,4	827±12,6		
дённые – 18						

по сравнению с выращиванием их по технологии молочного скотоводства.

Более наглядную разницу в интенсивности роста бычков под действием разных технологий выращивания характеризует их среднесуточный прирост (табл. 2).

Установлено, что более выраженные различия по среднесуточному приросту живой массы бычков наблюдались с 3-месячного возраста. Так, в возрасте от с 3 до 7 мес. этот показатель у бычков калмыцкой и бурой швицкой пород, выращенных на подсосе, был выше соответственно на 79 и 85 г по сравнению со значениями, полученными от сверстников, выращенных на ручном подсосе (P>0,999).

Отмечено снижение среднесуточного прироста живой массы у бычков всех групп в период с 7 до 9 мес., что можно связать с полным переходом на растительные корма. У молодняка калмыцкой и бурой швицкой пород, выращенного на подсосе, приросты по сравнению с предыдущим периодом снизились на $14.1 \ (P>0.999)$ и $15.8\% \ (P>0.999)$ соответственно, у сверстников, находившихся на ручной выпойке, — на $10.4 \ (P>0.999)$ и $16.6\% \ (P>0.999)$.

В дальнейшем пастбищное содержание подопытного поголовья способствовало увеличению среднесуточного прироста живой массы, что связано с богатым травостоем альпийского и субальпийского разнотравья. Среднесуточный прирост живой массы в возрастные периоды 9–12 и 12–15 мес. у бычков калмыцкой и бурой швицкой пород, выращенных на подсосе под коровами-кормилицами, а также швицев при ручной выпойке варьировали в пределах 902–952 г и были выше, чем у сверстников калмыцкой породы, выращенных по технологии молочного скотоводства.

После возвращения с высокогорных пастбищ в период стойлового содержания (15–18 мес.) максимальным среднесуточным приростом живой массы характеризовались бычки, выращенные в подсосный период по технологии производства говядины, принятой в мясном скотоводстве, который составил в среднем 908–929 г против 818–881 г у молодняка ручной выпойки.

В целом за весь период выращивания различия между калмыцкими бычками составили 55 г (P>0,99), бурыми швицкими — 54 г (P>0,99) в пользу особей, выращенных по технологии, принятой в мясном скотоводстве.

Более объективную оценку роста живой массы бычков подопытных групп даёт относительный прирост массы тела, так как он позволяет оценить особенности динамики живой массы молодняка, энергию роста, а также напряжённость обменных процессов, протекающих в растущем организме.

Как видно по данным, представленным в таблице 3, более высокая энергия роста, независимо от породной принадлежности и технологии

3. Относительная скорость роста
подопытного молодняка, %

	Порода				
Возрастной	калмыцкая		бурая швицкая		
период, мес.	группа				
	I	III	II	IV	
Новорождённые – 7	161,0	159,4	151,6	148,7	
7–12	50,3	50,7	47,2	47,4	
12–15	23,3	22,9	21,7	22,4	
15–18	18,8	18,0	17,8	18,0	
Новорождённые – 18	183,7	182,9	178,3	177,2	

выращивания, наблюдалась у бычков в первые месяцы выращивания, и в интервале от рождения до конца подсосного периода находилась в пределах 148,7—161,0%. Следует отметить, что наибольшими значениями относительной скорости роста отличались животные калмыцкой породы, превосходившие сверстников бурой швицкой породы, в зависимости от технологии выращивания в молочный период, в среднем на 9,4—10,7%. При анализе влияния технологии выращивания на энергию роста подопытного поголовья видно, что у калмыцкого скота подсосного выращивания этот показатель был на 1,6% выше, чем у сверстников ручной выпойки, у швицкого скота — на 2,9%.

В последующие возрастные периоды наблюдались те же тенденции между бычками сравниваемых групп по относительной скорости роста.

В целом за период от рождения до 18-месячного возраста энергия роста бычков, выращенных с использованием элементов технологии мясного скотоводства, была на 0.8-1.1% выше, чем у сверстников, находившихся на ручной выпойке. Межпородные различия по относительной скорости роста, независимо от технологии выращивания

молодняка, сохранились на протяжении всего периода исследования.

Вывод. Результаты проведённого исследования свидетельствуют о возможности повышения по-казателей роста калмыцкого и бурого швицкого скота путём применения технологии, принятой в мясном скотоводстве. Независимо от технологии выращивания в молочный период наибольшей живой массы достигают представители бурой швицкой породы, тогда как наибольшую энергию роста демонстрирует молодняк калмыцкой породы.

Литература

- 1. Гомбоев З.В. Продуктивные качества бычков калмыцкой породы разных генеалогических линий: автореф. дисс. ... канд. с.-х. наук. Улан-Удэ, 2015. 18 с.
- Иргашев Т.А., Косилов В.И., Заверюха А.Х. Продуктивные качества бычков казахской белоголовой, калмыцкой пород, зебу индубразил и их гибридов в горной зоне Таджикистана // Вестник мясного скотоводства. 2015. Т. 4. № 92. С. 29—37.
- Каюмов Ф.Г. Калмыцкая порода мясного скота важный резерв развития племенных ресурсов Ставрополья / Ф.Г. Каюмов, М.П. Дубовскова, Л.М. Половинко, Н.А. Калашников, В.В. Голембовский, Е.Д. Куш, А.И. Штельмах, Н.Д. Полянский, В.Д. Панасенко // Вестник мясного скотоводства. 2014. № 4 (87). С. 47–52.
- Гомбоев З.В. Продуктивные качества молодняка калмыцкой породы разных линий // Вестник Бурятской государственной сельскохозяйственной академии им. В.Р. Филиппова. 2014. № 4 (37). С. 51–56.
- Косян Д.Б. Биологические особенности и мясная продуктивность бычков калмыцкой породы различных генотипов: автореф. дисс. ... канд. биол. наук. Оренбург, 2014. 19 с.
- 6. Гайирбегов Д.Ш., Манджиев Д.Б. Влияние типа кормления на энергию роста и убойные качества бычков калмыцкой породы // Вестник Мичуринского государственного аграрного университета. 2014. № 1. С. 45–49.
- 7. Каюмов Ф.Г. Калмыцкая порода скота в племенных хозяйствах России / Ф.Г. Каюмов, В.Н. Черномырдин, Л.А. Маевская, Л.Г. Сурундаева, С.С. Польских // Известия Оренбургского государственного аграрного университета. 2014. № 5 (49). С. 116—119.
- 8. Ляпин О.А., Ляпина В.О. Мясная продуктивность бычковкастратов казахской белоголовой, калмыцкой и симментальской пород // Известия Оренбургского государственного аграрного университета. 2015. № 2 (52). С. 133–135.
- 9. Плохинский Н.А. Руководство по биометрии для зоотехников. М.: Колос, 1969. 256 с.