Изменение гемодинамики и кислородного режима организма телят после гипоксического воздействия

М.Ф. Карашаєв, д.б.н., ФГБОУ ВО Кабардино-Балкарский ГАV

Общеизвестно конструктивное действие адаптации к кислородной недостаточности, в процессе которой существенным образом улучшается состояние функциональной системы дыхания [1–7].

Адаптация к гипоксии в горных условиях успешно применяется в медицине для терапии многих заболеваний и повышения работоспособности. Широко используется метод гипербарической оксигенации в процессе барокамерной тренировки в медицинской и ветеринарной практике. Тем не менее в литературе мало данных о том, что происходит в отделах функциональной системы дыхания (ФСД), какое действие оказывает газообмен в лёгких на скорость поэтапной доставки кислорода

по отношению к его потреблению, насколько отличается состояние Φ СД больных железодефицитной анемией от того, что наблюдается у здоровых животных, как эти показатели изменяются после курса интервальной гипоксической тренировки (ИГТ) [8–10].

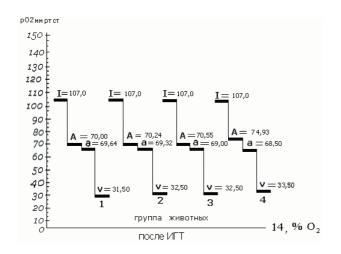
Цель работы — изучить реакцию кислородного режима организма телят на гипоксическое воздействие — интервальную гипоксическую тренировку.

Материал и методы исследования. Для изучения адаптации к гипоксии в курсе нормобарической интервальной гипоксической тренировки было отобрано четыре группы здоровых и больных железодефицитной анемией телят швицкой породы. В возрасте 5 сут. телят по принципу аналогов разделили на группы. У телят IV гр. наблюдалась вы-

раженная железодефицитная анемия. Содержание кислорода в гипоксической газовой смеси (ГГС) для проведения курса ИГТ выбирали на основании результатов гипоксического теста. Газовую смесь получали аппаратом «Гипоксикатор» «Trade Medical», конвертирующим окружающий воздух в гипоксическую газовую смесь с заданным содержанием кислорода. В день обследования телята после дыхания воздухом с 20,9% кислорода вдыхали ГГС с 16% кислорода (n = 39), с 14% кислорода (n = 41) в течение 10 мин. Дыхание ГГС осуществлялось в интервальном режиме: 5 мин. телёнок дышал ГГС с заданным содержанием кислорода, в следующие 5 мин. — окружающим воздухом с 20,9% О₂. Таких серий с интервальным гипоксическим воздействием в сеансе было четыре. Количество сеансов в курсе ИГТ составляло 15.

Результаты исследования. У телят, прошедших гипоксическую тренировку, достоверно уменьшилось физиологическое мёртвое дыхательное пространство (ФМДП). У больных железодефицитной анемией телят при вдыхании ГГС с 14% кислорода (O_2) ФМДП уменьшилось в 1,70 раза по сравнению с контрольной группой.

15-дневный курс вызвал увеличение альвеолярной вентиляции, которая при вдыхании больными


железодефицитной анемией телятами ГГС с 16 и 14% кислорода стала в среднем более чем в 1,55 и 1,47 раза выше, чем в контрольной группе. Этому способствовало уменьшение Φ MДП.

Пройденный курс изменил отношение альвеолярной вентиляции к минутному объёму дыхания (АВ/МОД) в опытных группах, который стал достоверно выше, чем у больных анемией и здоровых телят, не прошедших курс ИГТ, но не превосходило АВ/МОД при нормоксии. Самое высокое отношение АВ/МОД зафиксировано после курса ИГТ у здоровых телят при вдыхании ГГС с 16% О₂.

Результаты опытов показали, что курс ИГТ оказал адаптивное действие на сердечно-сосудистую систему и дыхательную функцию крови здоровых и больных железодефицитной анемией телят.

Увеличилось насыщение кислородом артериальной крови при вдыхании здоровыми и больными анемией телятами ГГС с 16 и 14% $\rm O_2$ после курса ИГТ, что вместе с возросшей кислородной ёмкостью крови обусловило увеличение содержания в ней кислорода и повышение напряжения в артериальной крови.

Вышеописанные изменения привели к тому, что парциальное давление кислорода (pO_2) в смешанной венозной крови снизилось у телят всех групп после

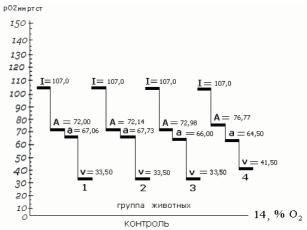


Рис. 1 – Каскады парциального давления кислорода на разных этапах его массопереноса в организме телят, прошедших курс ИГТ, при вдыхании ГГС с 14% кислорода

1. Изменение показателей экономичности кислородных режимов организма телят, прошедших курс ИГТ, в условиях нормоксии $(X\pm Sx)$

Показатель		Группа			
		I	II	III	IV
Вентиляционный	опыт	29,42±1,56*	29,64±1,18*	31,09±1,27*	32,08±1,61*
эквивалент	контроль	31,08±1,69	31,74±1,47	33,20±0,15	34,48±1,85
Кислородный эффект дыхательного	опыт	8,17±0,18**	6,76±0,54*	5,06±0,41*	4,21±0,34**
цикла, мл за 1 дыхательный цикл	контроль	6,48±0,23	5,36±0,69	3,87±0,11	2,74±0,12
Гемодинамический	опыт	13,53±0,36*	15,14±0,72*	17,50±1,94*	19,62±1,43**
эквивалент	контроль	16,62±0,29	17,16±0,87	23,28±0,57	31,40±1,09
КП, мл за 1 сердечное	ОПЫТ	4,02±0,03	3,59±0,02	3,11±0,09	2,77±0,06*
сокращение	контроль	3,27±0,05	2,92±0,05	2,34±0,08	1,75±0,09

Примечание: разность достоверна по отношению к контрольным значениям: *- при P<0,05; **- при P<0,01; ***- при P<0,001

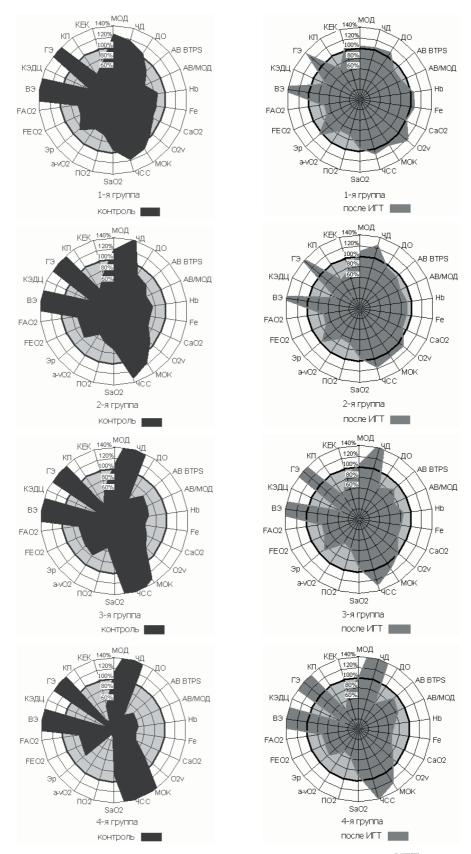


Рис. 2 – Модельная характеристика состояния организма телят, прошедших курс ИГТ, при вдыхании ГГС с 16 и 14% кислорода

курса ИГТ, особенно у больных железодефицитной анемией, что является следствием того, что утилизируется большее количество ${\rm O_2}$ из притекающей к тканям артериальной крови (рис. 1).

Диффузионная способность лёгких после курса ИГТ увеличилась как при вдыхании ГГС с 16% кислорода, так и при вдыхании ГГС, содержащей 14% O_2 . Её увеличение было обусловлено повышением

скорости потребления кислорода, уменьшением альвеолярно-артериального градиента pO_2 при гипоксии, изменениями дыхательной функции крови у телят за время проведения интервальной гипоксической тренировки. После проведения курса ИГТ при вдыхании ГГС с 16 и 14% O_2 парциальное давление кислорода в альвеолярном воздухе уменьшилось, это было особенно заметно в группе больных железодефицитной анемией телят. В смешанной венозной крови pO_2 также проявил тенденцию к снижению.

В контрольной группе у больных железодефицитной анемией телят насыщение кислородом венозной крови было больше, а артериальной меньше, чем у животных после курса ИГТ, что указывает на низкое усвоение кислорода из притекающей к тканям артериальной крови.

При вдыхании ГГС с 16 и 14% O_2 у больных железодефицитной анемией телят скорость потребления кислорода увеличилась больше, чем в контрольной группе, соответственно в 2,09 и 1,97 раза.

У здоровых и больных анемией телят, прошедших курс ИГТ, достоверно уменьшилась частота сердечных сокращений и увеличился ударный объём крови при вдыхании ГГС с 16 и 14% О2. Увеличилось насыщение кислородом артериальной крови, что вместе с возросшей кислородной ёмкостью крови обусловило повышение содержания кислорода. Вышеописанные изменения привели к тому, что рО₂ в смешанной венозной крови снизилось в крови телят всех групп после курса, особенно у больных железодефицитной анемией, что является следствием того, что утилизируется большее количество О₂ из притекающей к тканям артериальной крови. Диффузионная способность лёгких у здоровых и больных анемией телят после курса увеличилась как при вдыхании ГГС с 16% кислорода, так и при вдыхании ГГС, содержащей 14% О₂. Её увеличение было обусловлено увеличением скорости потребления кислорода, уменьшением альвеолярно-артериального градиента рО₂ при гипоксии, изменениями дыхательной функции крови у телят за время проведения интервальной гипоксической тренировки. Парциальное давление кислорода в альвеолярном воздухе уменьшилось, что было особенно заметно в группе больных железодефицитной анемией телят. В смешанной венозной крови рО2 также проявляет тенденцию к снижению. У здоровых и больных анемией телят достоверно увеличилось артерио-венозное различие по кислороду при вдыхании ГГС с 16 и 14% О2 по сравнению с животными контрольных групп. Это является показателем улучшения эффективности кровотока при снабжении тканей телят кислородом.

Кислородные режимы организма (КРО) стали намного эффективнее, на это указывает снижение соотношения скорости поступления и транспорта кислорода с его потреблением. У больных железодефицитной анемией телят, прошедших курс, это соотношение стало меньше в 2,36 раза, чем в

контрольной группе. КРО телят после пройденного курса ИГТ стали также более экономичными по сравнению с животными контрольных групп, что можно определить, сопоставив значения МОД и МОК с потреблением O_2 организмом.

О произошедшем повышении экономичности внешнего дыхания здоровых и больных железодефицитной анемией телят свидетельствует достоверное уменьшение вентиляционного эквивалента и увеличение кислородного эффекта дыхательного цикла. Повысилась экономичность внешнего дыхания: снизился вентиляционный и гемодинамический эквивалент, повысились кислородный эффект дыхательного цикла и кислородный пульс (табл.). Каждый литр кислорода стал утилизироваться из меньшего количества вдыхаемого воздуха и циркулирующей крови.

Представленная нами характеристика состояния здоровых и больных железодефицитной анемией телят швицкой породы даёт возможность оценить изменения, происходящие в организме после курса интервальной гипоксической тренировки (рис. 2).

Вывод. В процессе адаптации к гипоксии у здоровых и больных железодефицитной анемией телят произошли изменения внешнего дыхания, кровообращения, дыхательной функции крови, которые повлекли за собой изменение состояния кислородных режимов организма. Это обусловило снижение скорости поступления O_2 в лёгкие и увеличение скорости поступления кислорода в альвеолы. Изменения этих показателей привели к повышению скорости транспорта кислорода артериальной и смешанной венозной кровью и скорости потребления кислорода.

Литература

- 1. Косилов В.И. Научные и практические основы увеличения производства говядины при создании помесных стад в мясном скотоводстве. автореф. дисс. ... докт. с.-х. наук. Оренбург, 1995. 48 с.
- Косилов В.И., Буравов А.Ф., Салихов А.А. Особенности формирования мясной продуктивности молодняка симментальской и чёрно-пёстрой пород. Оренбург, 2006. 268 с.
- Белоусов А.М. Совершенствование бестужевского и чёрнопёстрого скота на Южном Урале / А.М. Белоусов, В.И. Косилов, Р.С. Юсупов, Х.Х. Тагиров. Оренбург, 2004. 300 с.
- Косилов В.И. Повышение мясных качеств красного степного скота путём двух-трёхпородного скрещивания. 2004. 200 с.
- Миронова И.В., Тагиров Х.Х. Рациональное использование биоресурсного потенциала бестужевского и чёрно-пёстрого скота при чистопородном разведении и скрещивании. М.: Издательство «Лань», 2013. 400 с.
- Белошицкий П.В. Синергизм при адаптации к гипоксии // Гипоксия: механизмы адаптация коррекция: матер. IV Росс. конф. (с междунар. участием). М.: ГУ НИИ ОПП РАМН, 2005. С. 12–13.
- Закусило М.П., Мафедзова В.А. Эффективность ИГТ в коррекции анемии // Эффективность использования адаптации к гипоксии в курсе ИГТ в медицине. М. — Нальчик: КБНЦ РАН, 2001. С. 73–80.
- Зеленкова И.Е., Чомахидзе П.Ш., Ачкасов Е.Е. Исследование адаптации к гипоксии у фридайверов // Экспериментальная и прикладная физиология. Инновационные подходы в физиологии и медицине: труды IV конф. молодых учёных и студентов. М., 2013. С. 22–23.
 Карашаев М.Ф. Характеристика систем дыхания и кро-
- Карашаев М.Ф. Характеристика систем дыхания и кровообращения новорождённых телят // Вестник Российской академии сельскохозяйственных наук. 2006. № 2. С. 80–81.
- Кирова Ю.И. Регуляторная роль сукцинатзависимых сигнальных систем (hif-1a и gpr91) при адаптации к гипоксии: автореф. дисс. ... докт. биол. наук. М., 2016. 32 с.