Обмен веществ в организме свиноматок при использовании в рационе адсорбирующих кормовых добавок

Д.В. Чикотин, аспирант, ФГБОУ ВО Южно-Уральский ГАУ

Продуктивность сельскохозяйственных животных во многом зависит от переваримости питательных веществ корма и поступления в кровь и лимфу пластических веществ — белков, жиров и углеводов, концентрацию которых контролируют по содержанию их основных метаболитов в крови [1, 2]. Это во многом позволяет судить об эффективности использования изучаемых кормовых добавок в рационах сельскохозяйственных животных и птиц [3—10].

В проведённом нами исследовании была поставлена **цель** — сравнить обмен веществ в организме свиноматок при использовании в рационе адсорбирующих кормовых добавок Набикат и Пробитокс. В задачи исследования входило: изучить переваримость и использование питательных веществ рациона, рассчитать баланс азота, кальция и фосфора, проанализировать отдельные биохимические показатели крови свиноматок в период супоросности.

Материал и методы исследования. Для решения поставленных задач на базе ЗАО «Уралбройлер» Челябинской области был проведён научно-хозяйственный опыт на четырёх группах основных и проверяемых свиноматок, по 21 гол. в каждой, подобранных с учётом породы, возраста, живой массы и периода супоросности. К основному ра-

циону кормления, который получали животные всех групп, свиноматкам II гр. добавляли минеральную кормовую добавку Набикат в количестве 2,0 кг/т комбикорма, III гр. — Набикат 1,0 кг и Пробитокс 1,0 кг, IV гр. — Пробитокс 2,0 кг/т корма.

Для изучения переваримости и использования питательных веществ рациона на глубоко супоросных основных свиноматках по методике ВИЖ был проведён балансовый опыт, по результатам которого были рассчитаны коэффициенты переваримости питательных веществ, баланс азота, кальция и фосфора. На 28-е и 110-е сут. супоросности у пяти животных из каждой группы для контроля обмена веществ была взята кровь с целью определения в ней отдельных метаболитов обмена веществ. На трёх животных из каждой группы провели балансовый опыт. Полученный цифровой материал был обработан биометрически на персональном компьютере. Достоверной считали разницу при P<0,05.

Результаты исследования. Полученные результаты свидетельствуют, что кормовая добавка Набикат способствовала повышению в организме свиноматок II опытной гр. в сравнении с аналогами I контрольной гр. переваримости сухого вещества на 2,27%, органического вещества — на 2,62%, сырого протеина — на 1,84% и сырого жира — на 8,72% (P<0,05). При совместном скармливании кормовых добавок Набикат и Пробитокс в рационе у животных III опытной гр. наблюдалось лишь

достоверное увеличение переваримости сырого протеина на 0.75% (P<0.05) (табл. 1).

Использование в рационе свиноматок IV опытной гр. только Пробитокса в количестве 2,0 кг/т комбикорма не отразилось на повышении переваримости питательных веществ рациона. Проведённый расчёт баланса азота показал, что азотистые вещества корма лучше использовались в организме животных опытных групп, чем в контрольной (табл. 2).

При среднесуточном поступлении азота в организм свиноматок I гр. в количестве 68,95 г, II гр. — 75,90 г, III — 72,71 г и IV гр. — 75,76 г его потери с непереваренными веществами каловых масс в первых трёх группах были одинаковыми (18,23-18,66 г), в то время как в IV гр. они возросли на 1,40 г (P<0,05), достигнув величины 19,63 г. Потери азота с мочой у животных II и IV гр. были на уровне 34,28 и 34,79 г соответственно и превосходили таковые у аналогов I контрольной гр. на 3,14 и 3,65 г (P<0,05), у сверстников III гр. они составили всего лишь 0,85 г.

В результате среднесуточное отложение азота в теле свиноматок I контрольной гр. составило 19,58 г, в теле особей II гр. оно возросло на 3,41 г, III — на 2,47 г и IV гр. — на 1,76 г (P<0,01—0,01), а его использование в расчёте от принятого с кормом соответственно составило 41,95; 30,29; 30,35 и 28,17%, от переваренного — 31,65; 40,16; 40,84 и 38,03%.

Расчёт баланса кальция в организме свиноматок показал, что при его среднесуточном поступлении в количестве 35,32 г в I гр., 38,88 г — во II, 37,24 г — в III и 38,81 г — в IV гр. в теле животных отложение данного элемента соответственно составило 6,99;

8,34;7,56 и 7,28 г. Т.е. у свиноматок опытных групп в сравнении с контрольной отложение кальция в теле было выше на 1,55;0,57 и 0,29 г.

При среднесуточном потреблении с рационом фосфора свиноматками I гр. в количестве 21,06 г, II гр. — 23,19 г, III — 22,21 г и IV гр. — 23,14 г его общие потери с каловыми массами и мочой составили соответственно 16,63; 18,15; 17,70 и 18,66 г. Отложение фосфора в теле подопытных животных I гр. было на уровне 4,43 г, II — 5,04 г (P<0,05), III — 4,51 г и IV — 4,48 г.

Различная переваримость питательных веществ рациона свиноматками под влиянием изучаемых кормовых добавок отразилась на биохимических показателях их крови. По таблице 3 видно, что на 28-е сут. супоросности в сыворотке крови свиноматок I, III и IV гр. содержание общего белка находилось в пределах 75,03-78,18 г/л, креатинина -136,75-157,10 мкмоль/л, в то время как у животных II гр. их количество возросло на 4,1% (P<0,05) и 13,3% (P>0,05) соответственно.

Уровень мочевины в крови подопытных животных изменялся в пределах 4,85-5,17 ммоль/л, гемоглобина — 117,98-126,20 г/л, общих липидов — 2,85-3,17 г/л, глюкозы — 2,90-3,07 ммоль/л, щелочного резерва — 51,55-54,92 об.% CO_2 и не имел достоверного различия. В то же время в сыворотке крови свиноматок II и в IV гр. по сравнению с I отмечалось достоверное повышение количественного содержания холестерина на 37,1% (P<0,001), II гр. — AcAT в 1,7 раза (P<0,001).

У свиноматок II и III гр. на 110-е сут. супоросности содержание в сыворотке крови общего белка было на уровне 77,42 и 75,90 г/л, что превосходило показатель в I контрольной гр. на 7,5 и 5,3%

1.	Коэффициенты переваримости питательных и	веществ
	рациона свиноматок, % (n=3; $X \pm Sx$)	

Показатель	Группа			
Показатель	I	II	III	IV
Сухое вещество	$70,85\pm0,68$	73,12±0,57*	72,36±0,27	72,17±0,09
Органическое вещество	$73,47\pm0,72$	75,33±0,19*	$74,56\pm0,27$	74,27±0,22
Сырой протеин	$73,58\pm0,24$	75,42±0,58*	74,33±0,20*	74,08±0,10
Сырая клетчатка	$26,90\pm2,55$	33,18±2,35	29,78±1,83	27,20±3,17
Сырой жир	48,80±3,83	57,52±1,08*	53,08±1,63	52,66±0,20
БЭВ	$79,48\pm0,61$	80,47±0,51	80,28±0,55	80,20±0,35

Примечание: здесь и далее * – P<0,05; ** – P<0,01; *** – P<0,001

2. Баланс азота в организме свиноматок, г (в среднем на 1 животное в сут.) $(n=3; X\pm Sx)$

П	Группа			
Показатель	I	II	III	IV
Принято с кормом	68,95±0,80	75,90±0,94***	72,71±1,17*	75,76±1,65**
Выделено в кале	$18,23\pm0,24$	18,64±0,22	18,66±0,17	19,63±0,41*
Переварено	50,71±0,66	57,26±1,16**	54,04±1,00*	56,13±1,25*
Выделено в моче	31,14±0,62	34,28±0,89*	31,99±1,06	34,79±0,87**
Выделено всего	49,37±0,70	52,91±0,72*	50,65±1,22	54,42±1,28**
Отложилось в теле	19,58±0,23	22,99±0,68***	22,05±0,05***	21,34±0,45**
Использовано, %: от принятого	41,95±13,61	30,29±0,71	30,35±0,56	28,17±0,32
от переваренного	31.65±6.87	40.16±0.92	40.84±0.86	38.03±0.39

Показатель	Группа					
Показатель	I	II	III	IV		
28-е сут. супоросности						
Гемоглобин, г/л	121,28±1,22	117,98±5,56	126,20±2,36	122,93±1,92		
Общий белок, г/л	77,50±1,02	80,68±2,36	78,18±1,56	75,03±1,49		
Мочевина, ммоль/л	4,85±0,06	5,10±0,15	5,17±0,08	5,13±0,08		
Креатинин, мкмоль/л	136,75±8,15	154,90±1,97*	157,10±7,06	141,63±2,80		
Общие липиды, г/л	3,06±0,04	3,04±0,05	2,85±0,09	$3,17\pm0,13$		
Холестерин, ммоль/л	1,70±0,13	2,33±0,08***	$1,88\pm0,07$	2,33±0,08***		
Глюкоза, ммоль/л	2,90±0,04	2,98±0,12	$3,07\pm0,09$	2,94±0,26		
АлАт, ммоль/л час	$0,38\pm0,04$	0,68±0,03***	$0,63\pm0,05***$	0,50±0,04**		
АсАТ, ммоль/л час	$0,17\pm0,02$	0,30±0,03***	$0,21\pm0,02$	$0,12\pm0,01$		
Коэф. де Ритиса	0,45	0,44	0,33	0,24		
Щелочной резерв, об. % CO ₂	53,78±1,41	51,55±1,01	52,68±0,87	54,90±0,85		
110-е сут. супоросности						
Гемоглобин, г/л	104,40±2,31	128,78±3,06***	114,48±3,20*	109,88±3,60		
Общий белок, г/л	72,05±1,08	77,42±1,88*	75,90±0,16**	73,30±1,17		
Мочевина, ммоль/л	4,33±0,15	4,15±0,21	$4,32\pm0,17$	4,54±0,10		
Креатинин, мкмоль/л	181,03±7,85	189,08±9,35	185,05±10,80	177,00±5,09		
Общие липиды, г/л	2,90±0,09	3,55±0,13***	2,89±0,06	$3,25\pm0,21$		
Холестерин, ммоль/л	2,32±0,14	2,41±0,07	2,06±0,13	2,60±0,21		
Глюкоза, ммоль/л	4,40±0,32	4,34±0,20	4,53±0,14	4,42±0,13		
АсАт, ммоль/л час	0,42±0,04	$0,44\pm0,06$	$0,42\pm0,04$	$0,46\pm0,03$		
АлАТ, ммоль/л час	$0,59\pm0,03$	0,56±0,02	$0,63\pm0,03$	$0,59\pm0,04$		
Коэф. де Ритиса	0,71	0,79	0,67	0,78		
Щелочной резерв, об. % CO ₂	54,88±2,59	48,18±0,87*	56,00±0,98	51,53±1,72		

(P<0,05-0,001) при одинаковом уровне содержания мочевины (4,15-4,54 ммоль/л) и креатинина (177,00-189,08 мкмоль/л).

Однако кормовая добавка Набикат в рационе животных II гр. способствовала повышению в сыворотке крови животных содержания гемоглобина на 23,4% (P<0,001), общих липидов — на 22,4% (P<0,001), но понизила щелочной резерв на 12,2%(Р<0,05). При этом коэффициент де Ритиса у свиноматок II гр. составил 0,79, а у животных I, III и IV гр. был равен 0,71; 0,67 и 0,78, что свидетельствует о наилучшей функциональной активности печени у животных данной группы.

Достоверных различий по содержанию в крови животных подопытных групп глюкозы отмечено не было. Её уровень изменялся от 4,34 ммоль/л во II гр. до 4,53 ммоль/л — в III гр.

Вывод. Кормовая добавка Набикат в дозе 2,0 кг/т комбикорма в сравнении с аналогичным количеством Пробитокса и при их совместном скармливании положительно влияет на переваримость сухого и органического вещества рациона, сырого протеина и сырого жира, повышает обменные процессы анаболического характера в организме супоросных свиноматок.

Литература

- 1. Перевойко Ж.А., Косилов В.И. Основные биохимические показатели крови хряков и свиноматок крупной белой породы // Известия Оренбургского государственного аграрного университета. 2014. № 5 (49). С. 196–199.
- 2. Косилов В.И., Перевойко Ж.А. Биохимические показатели сыворотки крови молодняка свиней крупной белой породы

- разных генотипов // Известия Оренбургского государствен-
- ного аграрного университета. 2015. № 3 (53). С. 194–196. Овчинников А.А., Мазгаров И.Р., Лобанова Д.С. Влияние биологически активных добавок рациона на обмен веществ в организме свиноматок // Известия Оренбургского государственного аграрного университета. 2014. № 1 (45). С. 119–122.
- Косилов В.И., Миронова И.В. Потребление питательных веществ и баланс азота у коров чёрно-пёстрой породы при введении в их рацион пробиотического препарата Ветоспорин-Актив // Известия Оренбургского государственного аграрного университета. 2015. № 3 (53). С. 122-124.
- 5. Миронова И.В. Закономерность использования энергии рационов коровами чёрно-пёстрой породы при введении в рацион пробиотической добавки Ветоспорин-Актив / И.В. Миронова, В.И. Косилов, А.А. Нигматьянов, Н.М. Гу башев // Актуальные направления развития сельскохозяйственного производства в современных тенденциях аграрной науки: сб. науч. трудов, посвящ. 100-летию Уральской сельскохозяйственной опытной станции. Министерство сельского хозяйства Республики Казахстан; Акционерное общество «КазАгроИнновация»; ТОО «Уральская сельскохозяйственная опытная станция». Уральск, 2014. С. 259–265.
- 6. Овчинников А.А., Карболин П.В. Глауконит и цеолит в рационе цыплят-бройлеров // Кормление и кормопроизводство. 2012. № 5. С. 62–68.
- Косилов В.И., Миронова И.В. Влияние пробиотической добавки Ветоспорин-Актив на эффективность использования энергии рашионов лактирующими коровами чёрно-пёстрой породы // Вестник мясного скотоводства. 2015. № 2 (90). С. 93–98.
- 8. Овчинников А.А., Долгунов А. Мясная продуктивность цыплят-бройлеров при использовании в рационе различных сорбентов // Учёные записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана. 2011. 208. C. 60-65.
- 9. Шацких Е.В. Минеральная сорбционная добавка БШ в комбикормах для цыплят-бройлеров / Е.В. Шацких, М.Э. Бураев, Л.П. Луцкая, В.В. Котомцев // Главный зоотехник. 2015. № 4. С. 45—53. 10. Гизатова Н.В. Эффективность использования питательных
- веществ рациона тёлками казахской белоголовой породы при скармливании им пробиотической добавки Биодарин / Н.В. Гизатова, И.В. Миронова, Г.М. Долженкова, В.И. Косилов // Известия Оренбургского государственного аграрного университета. 2016. № 2 (58). С. 104-106.