Ассоциация полиморфизма гена бета-казеина с молочной продуктивностью коров плановых пород Республики Башкортостан

Ф.Р. Валитов. к.с.-х.н., ФГБОУ ВО Башкирский ГАУ

Скотоводство — ведущая отрасль животноводства в России [1—4]. При ведении селекционноплеменной работы в молочном скотоводстве важное значение имеет не только высокая молочность коров, но и качественный состав полученного молока, т.е. содержание в нём жира, белка и других фракций. Казеины составляют около 80% от общего содержания белка в молоке. Бета-казеин является одним из основных молочных белков и членом казеинового кластера с 13 известными вариантами. Это наиболее полиморфный ген молочных белков. Ген бета-казеина (CSN2) локализован в шестой хромосоме. Он является маркёром продуктивных признаков молочного скота [5—7].

Большой интерес для популяционно-генетических исследований представляет изучение полиморфизма генов белков молока, и в частности CSN2. В селекции важное значение имеет выявление связей между генотипами генов белков молока и признаками продуктивности животных. Так, молоко коров, имеющих в генотипе аллель CSN2^B, характеризуется повышенным содержанием жира и казеина. Генотип CSN2^{BB} положительно коррелирует с содержанием жира в молоке, а генотип CSN2^{BB} – отрицательно. При этом 3,5% фенотипической вариабельности содержания белка в молоке может быть связано с полиморфизмом в гене бета-казеина. Наблюдается зависимость белковомолочности от полиморфизма по CSN2 и CSN3. Установлено, что присутствие В-аллеля бета- и каппа-казеинов в генотипе коров, широкое использование гетерозиготных быков-производителей по этим локусам приводит к повышению содержания белков и улучшению сыродельческих свойств молока [8].

Имеется тесная связь технологических качеств молока и молочных продуктов с генами казеинового кластера и изучены различные комбинации генотипов [9]. В последние годы использование быков голштинской породы обусловило резкое повышение продуктивности коров в племенных стадах, но одновременно с этим появилась тенденция снижения белковости и ухудшения сыродельческих свойств молока [10].

Внедрение маркерной селекции должно опираться на сведения о распространённости «желательных» и «нежелательных» аллелей и генотипов по маркерным генам у наиболее распространённых пород в конкретном регионе [8].

Цель настоящего исследования — оценка частоты встречаемости аллелей и генотипов бета-казеина и определение эффективности его влияния на молочную продуктивность коров плановых пород Республики Башкортостан.

Материал и методы исследования. Для исследования были проведены выборки коров плановых пород в племенных хозяйствах Республики Башкортостан различных пород — чёрно-пёстрой, бестужевской и симментальской.

Методом ПЦР-ПДРФ с использованием соответствующей эндонуклеазы рестрикции выявляли полиморфизм гена CSN2. Частоту встречаемости генотипов определяли по формуле Меркурьевой (1983), отдельных аллелей — по формуле Алтухова (2002). Статистическую ошибку для частот генов определяли по формуле Животовского (1991).

Данные о молочной продуктивности коров получены из племенных карточек формы Ф-2 МОЛ непосредственно в хозяйстве. Качественные показатели молока оценены в лаборатории селекционного контроля качества молока ОАО «Башкирское» по племенной работе на приборе «Лактан 700М».

Полученные результаты были статистически обработаны по стандартным методам с использованием компьютерной программы «Statistica».

Результаты исследования. В таблице 1 представлены частоты аллелей и генотипов гена CSN2 в изученных группах коров чёрно-пёстрой, симментальской и бестужевской пород.

По таблице 1 и рисунку 1 видно, что у всех изучаемых пород наиболее часто встречаемым является гомозиготный генотип $CSN2^{AA}$. Наибольшая его частота отмечается у бестужевской породы — 66,4%, затем у чёрно-пёстрой — 61,8%, наименьшая — у симментальской — 50%. По частоте генотипа $CSN2^{AB}$ преимущество имели коровы симментальской породы — 33,9%, что больше, чем у бестужевских коров, на 12,7%, чёрно-пёстрых — на 9,1%. Генотип $CSN2^{BB}$ у всех трёх изученных

1	Распрелеление ч	остот	генотипов	τx	эппепей	гена	CSN2
Ι.	Распрелеление ч	actor	тенотипов	и	аллелеи	гена	COINZ

Поможо	n	Частота генотипов, %			Частота аллелей		
Порода		CSN2 ^{AA}	CSN2 ^{AB}	CSN2 ^{BB}	CSN2 ^A ±m _A	$CSN2^B \pm m_B$	
Чёрно-пёстрая	444	61,8	24,8	13,4	0,74±0,02	0,26±0,02	
Бестужевская	204	66,4	21,2	12,4	$0,76\pm0,03$	$0,24\pm0,03$	
Симментальская	56	50,0	33,9	16,1	$0,66\pm0,03$	$0,34\pm0,03$	

пород встречался с низкой частотой и колебался от 12.4 до 16.1%.

Частота аллеля $CSN2^A$ была выше частоты аллеля $CSN2^B$ у всех пород крупного рогатого скота. Так, у коров чёрно-пёстрой и бестужевской пород частоты аллелей $CSN2^A$ и $CSN2^B$ были практически равны (0,76), а у коров симментальской составляли 0,66. Максимальное значение частоты аллеля $CSN2^B$ наблюдалось у коров симментальской породы — 0,34, минимальное — бестужевской породы — 0,24 (рис. 2).

Результаты анализа молочной продуктивности коров изучаемых пород представлены в таблице 2.

Данные таблицы 2 указывают на то, что по удою среди чёрно-пёстрых коров преимущество было у особей с генотипом $CSN2^{AA}$ (4810,21 \pm 71,53 кг), что больше, чем у коров с генотипом $CSN2^{BB}$, на 227,8 кг

(P<0,05) и с генотипом $CSN2^{AB}$ — на 114,8 кг (P>0,05). Наибольший удой у коров бестужевской породы также был выявлен у животных с генотипом $CSN2^{AA}$ (3589,13±95,14 кг), или выше на 97,4 кг (P>0,05) и 87,9 кг (P>0,05), чем у коров с генотипами $CSN2^{BB}$ и $CSN2^{AB}$ соответственно. Среди коров симментальской породы набольший удой имели животные с генотипом $CSN2^{AB}$ — 3758,12±36,24 кг, причём различия с другими генотипами были недостоверными (P>0,05) и составляли от 21,5 до 57,0 кг. Вариабельность данного показателя колебалась в пределах от 6,12 до 15,31%.

Содержание жира в молоке коров с различными генотипами было практически одинаковым и колебалось по породам в пределах от 3,71 до 3,75% (P>0,05). Коэффициент вариации этого показателя составлял 1,51-5,34%.

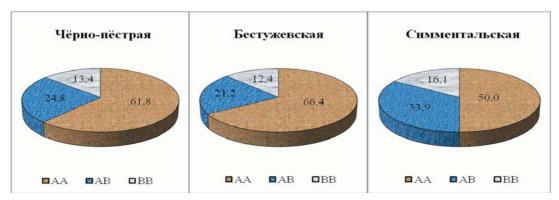


Рис. 1 – Графическое изображение частот генотипов по гену CSN2 у различных пород крупного рогатого скота, %

2. Молочная продуктивность коров исследуемых пород с различными генотипами по гену CSN2 ($X\pm Sx$)

Показатель	Генотип животных на основе ДНК-диагностики						
	Чёрно-г	іёстрая порода					
	CSN2AA (n=273)	CSN2AB (n=108)	CSN2BB (n=63)				
Удой, кг	4810,21±71,53*	4695,42±56,23	4582,33±39,45				
Cv, %	14,26	13,88	15,31				
Жир, %	3,75±0,01	$3,75\pm0,02$	$3,75\pm0,02$				
Cv, %	4,81	5,34	5,20				
Белок, %	3,25±0,007	$3,26\pm0,005$	3,25±0,01				
Cv, %	2,65	2,33	2,98				
	Бестуж	евская порода					
	CSN2AA (n=135)	CSN2AB (n=42)	CSN2BB (n=27)				
Удой, кг	3589,13±95,14	3501,28±41,44	3491,73±58,44				
Cv, %	13,22	12,48	14,01				
Жир, %	3,81±0,01	$3,82\pm0,01$	3,82±0,01				
Cv, %	1,51	1,88	2,01				
Белок, %	3,54±0,04	$3,53\pm0,05$	3,68±0,05*				
Cv, %	5,12	6,37	4,88				
	Симмент	гальская порода					
	CSN2AA (n=28)	CSN2AB (n=19)	CSN2BB (n=9)				
Удой, кг	3701,08±51,25	3758,12±36,24	3736,59±58,41				
Cv, %	6,12	8,98	9,02				
Жир, %	3,71±0,02	$3,73\pm0,02$	$3,73\pm0,03$				
Cv, %	4,13	4,44	4,63				
Белок, %	3,42±0,02	$3,43\pm0,02$	$3,41\pm0,02$				
Cv, %	3,01	2,86	2,54				

Примечание: * - P < 0.05

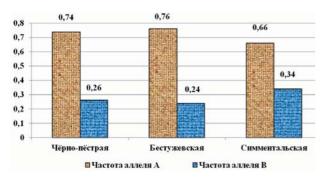


Рис. 2 – Графическое изображение частоты аллелей гена CSN2

По белку молока коровы чёрно-пёстрой породы достоверных различий между генотипами не имели. Коровы симментальской породы с генотипом $CSN2^{BB}$ имели максимальное содержание белка $(3,68\pm0,05\%)$ и достоверно превышали особей с генотипами $CSN2^{AB}$ на 0,15% (P<0,05) и особей с генотипом $CSN2^{AA}$ на 0,14% (P<0,05). Коэффициент вариации по белку молока, так же как и по массовой доле жира, был невысокий и колебался по породам от 2,33 до 6,37%.

Выводы. Наибольшим надоем молока отличались коровы чёрно-пёстрой породы с генотипом CSN2^{AA} (4810,21 кг), которые по данному показателю достоверно превышали особей с генотипом CSN2^{BB} на 227,8 кг, с генотипом CSN2^{AB} — на 114,8 кг. Достоверных различий между генотипами по уровню содержания жира в молоке по всем породам не обнаружено. Максимальное содержание белка (3,68%) отмечалось у коров с генотипом CSN2^{BB} симментальской породы, что было достоверно выше, чем у особей с генотипами CSN2^{AB}, — на 0.15% и особей с генотипом CSN2^{AA} — на 0.14%.

Результаты исследования показали целесообразность и эффективность проведения молекулярногенетического тестирования плановых пород крупного рогатого скота по изучаемому гену для объективной оценки генетической ситуации и накопления в сталах «желательных» генотипов.

Литература

- Косилов В.И., Миронова И.В. Потребление питательных веществ и баланс азота у коров чёрно-пёстрой породы при введении в их рацион пробиотического препарата Ветоспорин-актив // Известия Оренбургского государственного аграрного университета. 2015. № 3 (53). С. 122—124.
- 2. Белоусов А.М. Совершенствование бестужевского и чёрнопёстрого скота / А.М. Белоусов, В.И. Косилов, Р.С. Юсупов, X.X. Тагиров. Оренбург, 2004. 300 с.
- 3. Мироненко С.Й., Косилов В.И., Жукова О.А. Особенности воспроизводительной функции тёлок и первотёлок на Южном Урале // Вестник мясного скотоводства. 2009. Т. 2. № 62. С. 48–56.
- Комарова Н.К., Косилов В.И., Востриков Н.И. Влияние лазерного излучения на молочную продуктивность коров различного типа стрессоустойчивости // Известия Оренбургского государственного аграрного университета. 2015. № 3 (53). С. 132—134.
- 5. Зиновьева Н.А., Гладырь Е.А., Эрнст Л.К., Брем Г. Введение в молекулярную генную диагностику сельскохозяйственных животных. Лубровицы: ВИЖ. 2002. 112 с.
- 6. Машуров А.М. Генетические маркеры в селекции животных / М.: Наука, 1980, 318 с.
- Юмагузин Й.Ф. Белковый состав молока симментальских коров отечественной и австрийской селекции // Вклад молодых учёных в инновационное развитие АПК России: матер. Междунар. науч.-практич. конф. молодых учёных и специалистов. Екатеринбург: Уральское издательство, 2012. С. 91—95.
- Валитов Ф.Р., Давлетова Л.Ф. Полиморфизм гена бетаказеина коров плановых пород Республики Башкортостан // Аграрная наука в инновационном развитии АПК: матер. Междунар. науч.-практич. конф. в рамках XXVI Междунар. специализиров. выст. «Агрокомплекс-2016». Ч. II. Уфа, 2016. С. 27—30.
- 9. Долматова И.Ю., Валитов Ф.Р. Оценка генетического потенциала крупного рогатого скота по маркерным генам // Вестник Башкирского государственного университета. 2015. № 3 (20). С. 850—853.
- Хаертдинов Р.А., Афанасьев М.П., Хаертдинов Р.Р. Белки молока. Казань: Идеал-Пресс. 2009. 254 с.