Роль паров в стабилизации плодородия почвы и урожайности зерновых культур в севооборотах

П.А. Постников, к.с.-х.н., Уральский НИИСХ

Основой любой системы земледелия является севооборот на пашне, увязанный со структурой и продуктивностью других сельскохозяйственных угодий [1]. К формированию севооборотов в современных условиях выдвигаются следующие основные принципы: регулирование режима органического вещества и минеральных элементов питания; поддержание удовлетворительного структурного состояния почвы; регулирование водного баланса агроценозов; регулирование фитосанитарного состояния почвы [2, 3].

Актуальным в этой связи является включение в севообороты сидеральных паров, бобовых и бобово-злаковых трав, возделывание промежуточных культур, что позволяет активизировать биологические факторы плодородия, сократить до минимума использование минеральных удобрений, сохраняя при этом продуктивность пашни на высоком уровне [4—8].

Цель исследований — выявить воздействие сидеральных паров в севооборотах на физические, биологические свойства тёмно-серой лесной почвы и продуктивность севооборотов.

Материалы, методы и условия. В Уральском НИИСХ с 2002 г. проводится изучение полевых севооборотов с различными видами паров. Севообороты развёрнуты во времени и пространстве и изучаются по следующим схемам: 1. Зернопаротравяной — чистый пар, озимая рожь, ячмень с подсевом трав, клевер 1 г.п., пшеница. 2. Зернопаросидеральный — сидеральный пар (рапс), пшеница, овёс, однолетние травы, поукосно рапс, ячмень. 3. Зернопаросидеральный — сидеральный пар (донник), пшеница, овёс с подсевом трав, клевер 1 г.п., ячмень + донник.

Почва опытного участка — тёмно-серая лесная тяжелосуглинистая с содержанием гумуса 4,67-5,06%, легкогидролизуемого азота — 136-181 мг, подвижного фосфора — 206-268, обменного калия — 150-168 мг/кг почвы, сумма поглощённых оснований — 27,6-33,9 мг — экв. на 100 г почвы, $pH_{cor} = 4,9-5,1$.

Севообороты заложены на трёх фонах:

- 1. Без удобрений (естественный фон плодоролия).
- 2. Минеральный $N_{30}P_{30}K_{30}$ (в среднем на 1 га севооборотной площади).
- 3. Органоминеральный применение подстилочного навоза, сидератов, соломы на фоне $N_{24}P_{24}K_{24}$.

Метеоусловия в 2007—2010 гг. заметно отличались от среднемноголетних показателей. В большинстве лет исследований не происходило вос-

полнения запасов влаги в подпахотных горизонтах в послеуборочный период. В мае-июне отмечено выпадение осадков ниже нормы, к тому же они носили ливневый характер. Это отрицательно сказалось на урожайности большинства сельскохозяйственных культур, выращиваемых в севооборотах, особенно пострадали ячмень и клевер.

Результаты исследований. Определение запасов доступной влаги весной в корнеобитаемом горизонте показало, что замена чистого пара на сидеральные не ухудшала режим влажности пахотного слоя под культурами звеньев севооборотов, несмотря на её потребление сидеральными культурами в летний период. Запашка зелёной массы сидератов летом позволила повысить водоудерживающую способность тёмно-серой лесной почвы, в результате за счёт осенне-зимних осадков происходит восстановление запасов влаги.

Необходимо отметить, что при применении органических удобрений и возделывании многолетних бобовых культур в почве происходит биологическое её разуплотнение. Это благоприятно сказывается на увеличении запасов продуктивной влаги в подпахотных горизонтах. По отношению к неудобренному фону на органо-минеральном количество доступной воды в слое 0—50 см возросло на 10—15% (табл. 1).

Во всех севооборотах, за исключением зернопаросидерального с донником, при применении различных видов органических удобрений выявлена тенденция увеличения количества агрономически ценных агрегатов. Так, содержание воздушно-сухих агрегатов диаметром от 0,25 до 10 мм под культурами севооборотов при применении удобрений возросло на 4,1–8,7% по отношению к неудобренному фону. Наилучшие показатели отмечены в зернопаросидеральном севообороте с рапсом.

Анализируя данные по плотности пахотного горизонта, можно отметить, что замена чистого пара сидеральными позволила иметь под культурами севооборотов объёмную массу на уровне 1,06—1,16 г/см³, т.е. показатели соответствовали оптимальным значениям для тёмно-серой почвы. На естественном фоне плодородия во всех изучаемых севооборотах, где поступление растительной массы ограничено только пожнивно-корневыми остатками, этот показатель находился в пределах 1,16—1,18 г/см³. В то же время на органо-минеральном фоне питания увеличение поступления растительной массы способствовало разуплотнению почвы в пахотном горизонте во всех изучаемых севооборотах.

Анализ данных по разложению льняных полотен свидетельствовал о том, что активность целлюлозоразлагающих бактерий во многом зависела от поступления растительной массы с пожнивно-корневыми остатками и органическими удобрениями в севооборотах. Так, на минеральном и органо-минеральном фонах питания процент распада льняного полотна в пахотном слое находился в пределах 24,9—35,4%. По отношению к неудобренному фону разница составила 3,6—11,5%.

Запасы минерального азота $(N-NO_3 + N-NH_4)$ в период всходов зерновых находились в пределах 17,0—26,8 мг/кг почвы. За счёт внесения минеральных и органических удобрений наибольшее количество доступного азота выявлено на органоминеральном фоне питания во всех изучаемых севооборотах. Аналогичная закономерность отмечена и в последующие даты отбора почвенных проб.

Результаты полевых исследований показали, что использование сидератов в севооборотах способствует дальнейшему росту урожайности зерновых культур, Так, по сравнению с зернопаротравяным севооборотом отмечена тенденция увеличения среднегодового сбора зерна яровых зерновых на 0.11-0.32 т/га.

Следует отметить, что благодаря запашке зелёной массы сидеральной культуры в паровом поле в почву дополнительно поступает в среднем на 1 га севооборотной площади около 20 кг азота, фосфора -7,6-8,0 и калия -22-25 кг. Поступление легкоусвояемых элементов питания позволяет поддерживать высокую продуктивность зерновых культур в севообороте даже без многолетних трав. Так, в сидеральном севообороте с рапсом средняя урожайность яровых зерновых на удобренных фонах составила 3,60-3,65 т/га, а выход зерна с 1 га севооборотной площади достиг 2,15-2,20 т (табл. 2). Максимальный выход зерна достигнут в севообороте, где наряду с использованием донника на зелёное удобрение возделывался клевер. Насыщение севооборота многолетними бобовыми культурами способствовало накоплению биологического азота, что в конечном итоге благоприятно отразилось на продуктивности яровых зерновых

Наличие элементов биологизации (запашка сидератов, клевер) в севооборотах позволяет су-

1. Изменение свойств тёмно-серой лесной почвы в зависимости от системы удобрений и вида севооборотов, (0-20 см) 2007-2010 гг.

		- ' '			
	Фон питания	Севооборот			
Показатель		зернопаротравяной с чистым паром	зернопаросидераль- ный с рапсом	зернопаросидераль- ный с донником	
Запасы продуктивной	1	45,6	46,0	45,8	
влаги в период посева, мм	2	44,1	46,0	45,6	
(0-50 см)	3	51,0	52,8	50,6	
Плотность, г/см ³	1	1,18	1,16	1,18	
	2	1,20	1,16	1,16	
(после уборки)	3	1,10	1,06	1,09	
Доля почвенных частиц	1	70,1	68,7	73,9	
размером 0,25–10 мм, % (сухое просеивание)	2	71,3	73,9	71,1	
	3	75,2	77,4	73,7	
Гуудуулуудагад	1	22,4	28,8	23,0	
Биологическая	2	31,8	32,4	34,2	
активность, %	3	29,8	35,4	34,5	
Содержание минерального	1	17,0	19,7	19,9	
азота, мг/кг почвы	2	24,2	23,7	24,8	
(в фазе полных всходов)	3	26,0	25,8	26,8	

Примечание: 1. Без удобрений; 2. $N_{30}P_{30}K_{30}$; 3. $N_{24}P_{24}K_{24}$ + навоз, сидераты, солома. Аналогично в последующих таблицах

2. Урожайность зерновых культур и выход зерна в зависимости от вида севооборота и системы удобрений, 2007—2010 гг.

Севооборот Фон питания		Среднегодовая урожайность зерновых за ротацию, т/га	Выход зерна с 1 га севооборотной площади	Окупаемость 1 кг д.в., кг зерна
Зернопаротравяной с чистым паром	1	2,29	1,37	-
	2	3,49	2,05	13,3
	3	3,55	2,03	7,8
Зернопаросидеральный с рапсом	1	2,31	1,39	-
	2	3,60	2,20	10,8
	3	3,65	2,15	10,5
Зернопаросидеральный с донником	1	2,42	1,42	-
	2	3,82	2,26	14,6
	3	3,87	2,30	13,2
${\rm HCP_{05}}$ для фонов питания ${\rm HCP_{05}}$ для севооборотов	•	0,94 0,21		

3.	Продуктивность	севооборотов,	2007—2010 гг.
----	----------------	---------------	---------------

		Выход продукции с 1 га севооборотной площади*			
Севооборот	Фон питания	сухого вещества, т	кормовых единиц, тыс.	протеина, кг	
2	1	2,27	2,61	264	
Зернопаротравяной с чистым паром	2	2,89	3,41	323	
	3	3,01	3,35	335	
2	1	2,38	2,29	227	
Зернопаросидеральный	2	3,72	3,64	368	
с рапсом	3	3,69	3,63	374	
2	1	2,71	3,05	334	
Зернопаросидеральный с донником	2	3,68	3,91	403	
	3	3,71	4,02	415	
НСР ₀₅ для фонов питания		0,67	0,43	38,1	
HCP ₀₅ для севооборотов		$F_{05} < F_{\text{reop.}}$			

Примечание: * без учёта побочной продукции

щественно повысить окупаемость 1 кг д.в. питательных элементов, она в зернопаросидеральных севооборотах находится на уровне 10,4—14,6 кг зерна. Эти показатели заметно превосходят навозноминеральную систему удобрений, применяемую в зернопаротравяном севообороте.

Оценивая по продуктивности севообороты, можно сказать, что зернопаротравяной севооборот с чистым паром заметно уступал по продуктивности пашни зернопаросидеральному с донником. В данном севообороте за счёт более высокой урожайности зелёной массы с клевера стало возможным получение сбора кормовых единиц на удобренных фонах на уровне 3,91-4,02 тыс. (табл. 3). Аналогичная тенденция отмечена по выходу переваримого протеина с урожаем сельскохозяйственных культур. Зернопаросидеральный севооборот с рапсом (без многолетних трав) по сбору корм. ед. и протеина с урожаем культур занимал промежуточное положение.

Выводы. 1. Влагообеспеченность почвы в слое 0-50 см в среднем по севооборотам независимо от фона питания находилась на уровне 44,1-52,8 мм, т.е. она в годы наблюдений соответствовала неудовлетворительным условиям увлажнения. Наибольшие запасы влаги в период посева выявлены под культурами севооборотов на органо-минеральном фоне.

2. Применение органических удобрений в севооборотах способствовало улучшению агрофизических и биологических свойств тёмно-серой почвы по отношению к естественному фону, а именно плотность уменьшилась на $0.08-0.10 \, \text{г/см}^3$,

количество наиболее агрономически ценных комочков увеличилось на 4,1-8,7%, а ее биологическая активность возросла на 6,8-11,5%.

3. Максимальный сбор зерна на 1 га севооборотной площади за ротацию обеспечили севообороты с сидеральными парами. По выходу кормовых единиц и переваримого протеина на удобренных фонах питания имел заметное преимущество зернопаросидеральный с донником. Использование сидератов и соломы в качестве удобрения повысило окупаемость 1 кг д.в. на 2,7-5,4 кг зерна по сравнению с органо-минеральной системой удобрения с подстилочным навозом.

Литература

- 1. Мельцаев И.Г., Шрамко Н.В. Экологизация земледелия в Верхневолжье / под общ. ред. В.Ф. Мальцева. Иваново, 2006. 294 c.
- Кирюшин В.И. Экологические основы земледелия. М.: Колос, 1996. 354 с.
- Каштанов А.Н. Место и роль севооборотов в адаптивноландшафтном земледелии // Севооборот в современном земледелии / под ред. В.Г. Лошакова. М.: МСХА, 2004.
- 4. Лошаков В.Г. Севооборот основополагающее звено современных систем земледелия // Вестник РАСХН. 2005. № 6. C. 23–26.
- 5. Косолапова А.А., Попова С.И., Михайлова Л.А. и др. Агроэкологическая роль полевых севооборотов в условиях опольных ландшафтов Предуралья // Аграрный вестник Урала. 2012. № 2. С. 7–9.
- 6. Соснина И.Д. Влияние парозанимающих культур, севооборота и фона питания на баланс гумуса и трансформацию органического вещества в дерново-подзолистой почве Предуралья // Аграрный вестник Урала. 2012. № 9. С. 8-9.
- 7. Кузьминых А.Н. Сидераты важный резерв сохранения
- плодородия почвы // Земледелие. 2011. № 6. С. 41. Максютов Н.А., Скороходов Ю.В., Митрофанов Д.В. Агроэкологическая оценка чистых, почвозащитных и сидеральных паров под яровую пшеницу на чернозёмах южных оренбургского Предуралья // Известия Оренбургского государственного аграрного университета. 2012. № 5 (37). C. 56-58.