Геоэкологические аспекты оценки современного состояния малых рек оренбургского Приуралья

Т.В. Краснова, Оренбургский ГПУ; **А.В. Филиппова**, Оренбургский ГАУ

Малые реки, составляя основу гидрографической сети. в значительной мере определяют своеобразие состава волы и волных биоценозов. формируют гидрологический режим средних и крупных рек. Однако в силу ряда свойств и особенностей малые реки Оренбургской области являются наиболее уязвимым звеном гидрографической сети и требуют изучения с позиций комплексного ландшафтно-экологического подхода. Вместе с тем малые реки остаются наименее изученными водными объектами. В классической схеме экологического мониторинга отсутствует система наблюдений за малыми реками, а главный принцип организации мониторинга – пространственный и временной охват каждого водотока и водоёма наблюдательной сетью – не соблюдается [1].

Объекты, методы и результаты исследования. Проведение исследования не только самих водотоков, но и их бассейнов позволяет выявить причины изменения химического состава воды и причины изменения гидрологического режима малых водотоков.

Объектами нашего исследования явились реки Кинделя, Кувай и Лебяжка, которые дренируют центральную часть Общего Сырта. Эта платообразная возвышенная равнина сильно расчленена плотной речной сетью на узкие междуречья. Главная особенность этих рек — глубокие, резко асимметричные долины, рассекающие местность на множество асимметричных увалов — сыртов.

Годовой модуль речного стока на Общем Сырте составляет около 2,5 л/($c \cdot \text{км}^2$). В питании тоже есть общие закономерности: основное участие принимают атмосферные осадки, причём снеговое питание в годовом стоке реки составляет 50% и более, дождевые воды дают от 15–20 до 40–50% от годового стока. Реки имеют неравномерный сезонный сток: в весенний паводок (апрель — май)

они сбрасывают 70-80% воды; на летний период (июнь — сентябрь) приходится 8-12%, а на осень и зиму (октябрь — март) — по 4-8% от общего объёма годового стока [2].

В долинах исследуемых рек широкое распространение получили пойменные леса. Для низовий характерны болотистые и настоящие луга, для притеррасных понижений пойм — галерейные или куртинные черноольшаники. В нижнем течении преобладают разреженные тополёво-ветловые леса в сочетании с зарослями кустарников и разнотравно-злаковых лугов.

Река Кинделя — правый приток первого порядка р. Урала, её длина составляет 145 км, площадь водосбора — 1830 км². Исток реки находится на границе Новосергиевского и Переволоцкого районов — на узком междуречье высотой 259 м над уровнем моря. Протекая в широтном направлении, река принимает несколько мелких притоков. Ширина русла колеблется в пределах 7—30 м, на плёсах средние глубины составляют 2—3 м. В верховьях, у села Рыбкина, река зарегулирована двумя земляными плотинами.

Река Лебяжка является правым притоком р. Самары, в её нижнем течении расположен райцентр Новосергиевка. Берёт начало на северных склонах Общего Сырта в урочище Филипповка в 12 км к юго-западу от райцентра. Длина реки 24 км, площадь бассейна — 144 км². Ширина русла по длине реки различная и в среднем составляет 5 м, минимальная — 3 м, максимальная — 12 м; глубина колеблется от 0,1 до 1,6 м и в среднем составляет 0,5 м.

Река Кувай — левый приток р. Самары, имеет протяжённость 64 км, площадь водосбора — $821 \, \mathrm{km^2}$. Река берёт начало с возвышенности у горы Медвежий Лоб. Ширина русла колеблется от 6 до $13 \, \mathrm{m}$. В летний период река сильно мелеет, плёсы имеют глубину $0,5-1,5 \, \mathrm{m}$, а ямы — $2-3 \, \mathrm{m}$. Река дважды зарегулирована — в верхнем и среднем течении.

Результаты гидрохимического анализа водотоков Кинделя, Лебяжка, Кувай

	,									
					Река					
Показатель		Кинделя			Лебяжка			Кувай		Нормативы качества*
	весна	лето	осень	весна	лето	осень	весна	лето	осень	
Запах, балл	землистый (2)	землистый ощущается слабо (2)	землистый слабый (1)	рыбный (2)	землистый (2)	илистый (1)	рыбный, слабо ощущается (1)	слабый землистый (1)	слабо ощутимый илистый запах (1)	не более 2-х баллов
Цветность	желтоватая	желтоватая	светло- жёлт.	светло- жёлт.	желтоватая	желтоватая	желтоватая	светло- жёлтая	желтоватая	I
Мутность	мутная	слабомутн.	слабомутн.	мутная	слабомутная мутноватая	мутноватая	опалесци- рующая	слабомутная	опалесци- рующая	I
Водородн. показатель (рН)	7,1±0,1	7,2±0,1	7,0±0,1	$6,9\pm0,1$	7,0±0,1	7,1±0,1	7,0±0,1	7,1±0,1	7,2±0,1	6–9 ед.
Аммоний (NH ⁴⁺)	0,3±0,01	$0,25\pm0,01$	0,2±0,01	0.5 ± 0.01	0,3±0,01	$0,4\pm 0,01$	0,4±0,01	$0,2\pm0,01$	$0,4\pm 0,01$	0,5
Железо общее (Fe ²⁺ + Fe ³⁺)	$0,073\pm0,01$	0,074±0,01	$0,1\pm 0,01$	$0,069\pm0,01$	$0,062\pm0,01$	$0,05\pm0,01$	$0,072\pm0,01$	$0,068\pm0,01$	$0,06\pm0,01$	0,1
Общая жёсткость (Са ²⁺ +Mg ²)	3,3±0,1	4,5±0,1	3,3±0,1	3,0±0,1	4,3±0,1	4,0±0,1	4,0±0,1	4,3±0,1	4,1±0,1	7(10) моль/л экв.
Hurpar (NO ³⁻)	3,5±0,1	0,4±0,1	$0,1\pm 0,01$	$3,0\pm0,1$	0,7±0,1	$0,4\pm 0,01$	3,2±0,1	0.5 ± 0.1	$0,6\pm 0,01$	40
Ортофосфат (PO_4^{3-})	$0,3\pm0,01$	0,3±0,1	$0,3\pm 0,01$	$0,6\pm0,01$	$0,2\pm0,1$	$0,1\pm 0,01$	$0,5\pm0,01$	$0,3\pm 0,1$	$0,1\pm 0,01$	3,5 мг/л
Полифосфаты	$0,1\pm0,01$	$0,2\pm0,01$	$0,2\pm0,01$	$0,01\pm0,01$	0,01±0,01	$0,2\pm 0,01$	I	I	I	3.5 MF/Л (по PO_4^{3-})
Цинк, мг/л	$0,024\pm0,1$	$0,025\pm0,1$	$0,022\pm0,1$	$0,021\pm0,001$	$0,023\pm0,01$	$0,025\pm0,1$	$0,020\pm0,01$	$0,021\pm0,01$	$0,020\pm0,01$	0,01
Марганец, мг/л	$0,021\pm0,001$	$0,020\pm0,001$	$0,021\pm0,001$	$0,02\pm0,01$	0.02 ± 0.1	$0,019\pm0,1$	0.018 ± 0.01	0.021 ± 0.01	$0,022\pm0,01$	0,01
Медь, мг/л	$0,009\pm0,001$	$0,008\pm0,001$	$0,010\pm0,001$	$0,011\pm0,01$	$0,010\pm0,01$	$0,011\pm0,01$	$0,008\pm0,01$	$0,009\pm0,01$	$0,006\pm0,01$	0,001
Кобальт, мг/л	<предела обнаруж	0,001	0,001	$0,001\pm0,01$	0,001±0,01	$0,001\pm0,01$	<предела обнаруж	0,001	0,001	0,01
Кадмий, мг/л	0,002	0,001	<предела обнар.	0,003	0,003	0,003	<предела обнар.	0,001	<предела обнар.	0,005
Никель,мг/л	$0,005\pm0,01$	$0,006\pm0,01$	$0,005\pm0,01$	$0,006\pm0,01$	$0,007\pm0,01$	$0,008\pm0,01$	$0,009\pm0,01$	$0,008\pm0,01$	$0,009\pm0,01$	0,01
Свинец, мг/л	$0,01\pm0,01$	$0,010\pm0,01$	$0,012\pm0,01$	$0,013\pm0,01$	$0,010\pm0,01$	$0,014\pm0,01$	$0,015\pm0,01$	$0,012\pm0,01$	$0,015\pm0,01$	0,006
Хром, мг/л	$0,003\pm0,01$	$0,01\pm0,01$	$0,001\pm0,01$	$0,003\pm0,01$	$0,004\pm0,01$	$0,0003\pm0,01$	$0,001\pm0,01$	$0,001\pm0,01$	$0,001\pm0,01$	0,02
Железо, мг/л	$0,164\pm0,01$	$0,160\pm0,01$	$0,166\pm0,01$	$0,200\pm0,01$	$0,199\pm0,01$	$0,201\pm0,01$	$0,172\pm0,01$	$0,175\pm0,01$	$0,171\pm0,01$	0,1
Примечание: * ПЛК нормированных веществ в воде водных объектов рыбохозяйственного вододользования	TEIX BEITIECTB B 1	воле волных с	объектов рыбс	хозяйственно	ого волопольз	ования				

Примечание: * ПДК нормированных веществ в воде водных объектов рыбохозяйственного водопользования

Проблема снижения объёмов воды в летние сезоны усугубляется ёще и тем, что исследуемые речные системы располагаются на территории интенсивного аграрного освоения, распаханность водосборов составляет 60%. Ещё одна проблема малых рек Общего Сырта — неудовлетворительное состояние гидротехнических сооружений. Дамбы, построенные на речках, из-за того что водоотводные каналы в них забиты наносами, оказываются размытыми. Нами отмечены мощные отложения ила, захламлённость береговой зоны бытовым и строительным мусором. Отсутствие мероприятий по очистке леса приводит к засорению пойменной зоны сломанными деревьями. Это создаёт проблему водопропускной способности, что ежегодно приводит к подтоплению населённых пунктов.

Хозяйственная деятельность, осуществляемая на водозаборах малых рек, также сопровождается привносом значительного количества различных веществ, способствуя тем самым изменению физико-химического состава воды. Нами было проведено гидрохимическое изучение водотоков (табл.).

Точки отбора проб находились на территории, максимально удалённой от возможных источников воздействия, отбор осуществлялся в весенне-летне-осенний периоды 2011—2012 гг. Для всех исследуемых ключевых участков водотоков наблюдаются сезонные изменения гидрохимических показателей. Так, максимум концентрации

аммоний-иона и фосфатов отмечен на р. Лебяжке в весенний период. Основываясь на методе атомно-абсорбционной спектроскопии, отобранные пробы были обследованы на содержание тяжёлых металлов. Во всех точках отбора зафиксировано значительное превышение нормативов: по свинцу — в 2–2,5 раза, по цинку — в 2 раза, марганцу — в 1,9–2,2 раза, железу — 1,7–1,9 раза, по меди — в 6–10 раз.

Вывод. Проведённый анализ позволяет сделать вывод, что отсутствие системы закрепления зоны ответственности за прибрежными территориями малых водотоков и надлежащего обслуживания гидротехнических сооружений может привести к резкому ухудшению условий формирования стока малых рек, к уменьшению их водности. Степень распашки, условия регулирования речного стока должны определяться необходимостью сохранения основных черт естественного режима степных рек, а состояние гидротехнических сооружений должно контролироваться, при этом важной задачей является закрепление их за новыми владельцами.

Литература

- 1. Ежегодный информационный бюллетень о состоянии водных объектов, дна, берегов водных объектов, их морфометрических особенностей, водоохранных зон водных объектов, количественных и качественных показателей состояния водных ресурсов, состояния водохозяйственных систем, в том числе гидротехнических сооружений. Нижне-Волжское БВУ. Оренбург, 2011. 52 с.
- 2. Чибилёв А.А. Бассейн Урала: история, география, экология. Екатеринбург: УрО РАН, 2008. 312 с.