Особенности формирования репродуктивных качеств коров голштинской породы в условиях лесостепи Украины

Т.В. Литвиненко, к.с.-х.н., **Д.А. Дяченко**, магистр, Национальный университет биоресурсов и природоиспользования Украины

В условиях интенсификации и специализации молочного скотоводства на промышленной основе рост продуктивности и регулярное воспроизводство животных определяют рентабельность племенных хозяйств. Высокая интенсивность отбора животных, являющаяся основой генетического прогресса стада, повышает требования к воспроизводительной функции животных [1].

С повышением специализации и концентрации молочного поголовья ужесточились условия его содержания. При промышленной технологии производства молока у 6–8% коров отмечены трудные отёлы, у 15–20% — задержания последов, у 60–70% — эндометриты. Результативность осеменения составляет 40–50%, продолжительность сервис-периода — 140–150 сут. Все эти нарушения не позволяют получить 100 телят от 100 коров [2].

Воспроизводительная способность молочных коров — это важная составляющая комплексной оценки скота. Регулярные ежегодные отёлы обеспечивают мощный физиологический стимул последующей лактации, а полученный приплод даёт возможность вести расширенное воспроизводство стада, повысить экономическую эффективность производства молока за счёт реализации племенного молодняка и др. Учитывая приведённые выше факторы, можно утверждать, что плодовитость коров, наряду с их молочностью, является ведущим признаком селекции. Контролируют воспроизводительную способность коров по многим факторам, к которым относят: продолжительность стельности, сервис-период, сухостойный и межотельный периоды.

Голштинский скот характеризуется удовлетворительной воспроизводительной способностью, что обусловлено физиологическими особенностями высокопродуктивных животных. С повышением уровня производительности более 7000 кг молока наблюдается и увеличение межотельного периода. Следует отметить, что голштины требовательны к качеству кормления и условиям содержания и свои лучшие качества могут проявить лишь в оптимальных условиях.

Цель исследований заключалась в изучении и анализе показателей воспроизводительной способности коров голштинской породы зарубежной селекции и их потомства, рождённого и выращенного в условиях лесостепи Украины.

Материалы и методы. Материалом для исследования был чистопородный голштинский

скот, завезённый в Главный селекционный центр Украины (ГСЦ) Переяслав-Хмельницкого района Киевской области из США, Канады, Германии и Нидерландов, а также их потомки, полученные от завезённого скота и выращенные в условиях хозяйства. Для анализа использовали 1412 коров разных возрастных групп. Воспроизводительную способность коров оценивали по показателям: продолжительность стельности, сервис-периода, сухостойного и межотельного (МОП) периодов [3]. Первичные материалы исследований обрабатывали на ПЭВМ методом вариационной статистики с использованием программы «Statistica» для Windows.

Результаты исследований и их обсуждение. Продолжительность стельности как физиологическое состояние коровы с момента оплодотворения до отёла, в зависимости от условий кормления, содержания и других факторов, имеет значительные колебания — от 260 до 340 суток. В среднем эмбриональный период развития плода составляет 285 сут. [4, 5]. Относительно продолжительности стельности крупного рогатого скота существуют чёткие межпородные различия. Продолжительность пренатального периода голштинского скота составляет 276—282 сут. [1, 6].

По результатам исследований установлено, что продолжительность стельности коров немецкой и канадской селекции составила 275–287 сут., у животных США – 278–285, нидерландской селекции - 280-285, их потомков, родившихся и выращенных в данном хозяйстве, - 283-291 сут. Данные, приведённые в таблице, свидетельствуют, что продолжительность стельности коров голштинской породы в условиях хозяйства по всем лактациям (1412 периодов стельности) составила 283 ± 0.7 сут., а её колебания в различных селекционных группах находились в пределах 281-284 сут. Полученные результаты свидетельствуют, что наименьшую продолжительность стельности имели коровы из США (281 сут.), она была короче по сравнению с коровами немецкой, канадской селекции, а также Главного селекционного центра соответственно на 1 (P < 0.95); 3 (P > 0.999); 3 (P > 0.999) сут. Разница в отношении продолжительности стельности коров из США и Нидерландов также составляла 1 сут. Самую продолжительную по времени стельность имели коровы из Канады и Главного селекционного центра — 284 сут. с вероятной разницей P < 0.95.

Среди учёных и практиков не существует единого мнения относительно сроков осеменения коров после отёла или продолжительности сервис-периода.

После отёла, во время инволюции, в матке происходит восстановление железистого эпителия и секреции маточных желёз, которое осуществляется в четыре этапа. Считается, что в норме все стадии завершаются в течение 25—30 сут. после отёла. Для зародыша, который попадает в матку раньше этого срока, возникают неблагоприятные условия, и в большинстве случаев он погибает. Поэтому, как считают многие авторы, наиболее целесообразным и оптимальным осеменение и оплодотворение является на 40—60-е сут. после отёла [7].

У коров Главного селекционного центра по всем отёлам (1412 отёлов) продолжительность сервиспериода составляла 171±14 сут. С увеличением возраста коров продолжительность сервис-периода уменьшалась. После первого отёла он составлял 183 сут., а после пятого и шестого — соответственно 140 и 176 дней. Следует отметить, что длинный сервис-период наблюдался у коров голландской селекции (205±23 сут.). При этом максимальным он был после первого отёла (234 сут.), а минимальным – после третьего (155 сут.). Короткий сервиспериод отмечали у коров Главного селекционного центра (150 сут.) и коров немецкой селекции (159 сут.) с продолжительностью после первого отёла соответственно 190 и 152 сут., а после пятого -141 и 108 сут.

Распределение коров по продолжительности сервис-периода показало, что кратчайшим (до 120 сут.) он был только у восьми коров, что составило 0,6% общего поголовья, наиболее длинным (290 сут.) — у 17, или 1,2%.

У максимального количества животных (466 гол. — 33,0%) сервис-период составлял 150—160 сут., у 317 гол. или 22,4%, находился в пределах от 130 до 140 сут., у 322 коров (21,9%) — от 190 до 200 сут. Если считать, что оптимально сервиспериод должен быть около 90 сут., то фактически он превышал этот срок в среднем на 81 сут.

За время сухостойного периода организм коровы готовится к отёлу и последующей лактации. Это важный период в производственном цикле коровы, поскольку получение высокой молочной

продуктивности и хорошо развитого, полноценного приплода зависит от её подготовки в сухостойный период.

Многочисленными исследованиями и практикой скотоводства установлено, что оптимальная продолжительность сухостойного периода находится в пределах 45-70 сут. Сокращение сухостоя до 20, как и его увеличение до 80-100 сут., сопровождается снижением удоев в следующую лактацию [8]. Таким образом, сухостойный период необходим прежде всего для нормального развития плода и получения здорового, хорошо развитого телёнка. Во время сухостойного периода у коровы есть возможность создать в своём теле резервы энергии и питательных веществ и обеспечить для молочной железы достаточный отдых. Средняя продолжительность сухостойного периода у коров голштинской породы ГСЦ была 72±5 сут. с колебаниями от 51 ± 5 (шестая лактация) до 80 ± 8 сут. (третья лактация). Наименьший сухостойный период имел место у коров голландской селекции (65±5 сут.), а самый длинный наблюдался у животных канадской селекции (86±11 сут.). У 38,9% коров голштинской породы сухостойный период находился в оптимальном интервале (45-70 сут.), а 61,1% самок имели сухостойный период от 80 до 110 сут., что значительно превышало установленные зоотехнические нормы.

В ряде случаев с целью получения рекордных надоев высокопродуктивных коров осеменяют не в первые месяцы после отёла, а на пятом-шестом и позже. Лактация у таких коров длится более года, и, естественно, от них получают больше молока, чем за лактацию продолжительностью 305 сут. Вследствие этого срок межотельного периода увеличивается, а среднесуточный надой коров с удлинённой лактацией снижается. При изучении производительности холмогорского и чёрно-пёстрого скота было установлено, что среднесуточный надой коров с удлинённой лактацией, до 450 сут., составлял только 85% по сравнению с среднесуточным надоем за

Воспроизводительная способность коров голштинской породы

Селекционная группа, лактация	n	Стельность		Сервис- период		Сухостойный период		Межотельный период	
		сут.	Cv, %	сут.	Cv, %	сут.	Cv, %	сут.	Cv, %
по селекционным группам									
Немецкая	548	282±0,6	2,4	159±10	60	71±4	58	441±9	20
Канадская	218	284±0,8	2,1	181±21	69	86±11	82	465±16	28
Американская	152	281±1,2	2,0	186±19	56	70±8	40	467±24	26
Нидерландская	51	282±1,1	2,0	205±23	55	65±5	36	487±25	25
Головного селекционного центра	443	284±0,6	1,6	150±12	63	59±6	28	434±12	18
по лактациям									
Первая	633	283±0,6	2,3	183±12	62	_	_	_	_
Вторая	423	282±0,6	1,8	172±12	60	69±3	53	454±13	23
Третья	216	282±0,9	1,9	152±17	64	90±8	56	434±12	19
Четвёртая	95	282±1,1	1,8	146±25	61	76±8	42	428±16	20
Пятая	36	283±1,1	1,6	140±16	51	53±8	44	423±26	22
Шестая	9	283±1,3	1,6	176±30	50	51±5	36	459±20	17
В среднем	1412	283±0,7	1,8	171±14	61	72±5	52	454±14	21

300 сут. лактации, принятой за 100%. Таким образом, в случае значительного удлинения лактации можно потерять 15% молока.

В хозяйстве межотельный период у коров всех селекционных групп по всем лактациям вместе составлял 454±14 сут., на 70—80 сут. превышая желаемую продолжительность. При этом коротким он был у коров ГСЦ и немецкой селекции (434 и 441 сут.), а длинным — у коров голландской и американской селекции (487 и 467 сут.). В разрезе лактаций самый короткий межотельный период приходился на пятую (423 сут.), а самый длинный — на шестую лактации (459 сут.).

Заключение. Результаты исследований позволяют утверждать, что продолжительность стельности и сухостойного периода у коров голштинской породы в условиях лесостепи Украины составляла соответственно 283 сут. (с колебаниями от 281 до 284 сут.) и 72 сут. (с интервалом от 51 до 81 сут.). Сервис-период в среднем составлял 171±14 сут., на 81 сут. превышал максимально рекомендованную продолжительность (90 сут.). Удлинённый срок сервис-периода на 70–80 сут. сказался на увеличении межотельного периода — 454±14 сут. Всё это свидетельствует о том, что воспроизводительная способность импортированных коров из разных

стран мира, а также их потомков, родившихся и выращенных в условиях лесостепи Украины, — недостаточная, поэтому внимание украинских селекционеров и работников ветеринарной медицины должно быть сосредоточено на максимальном улучшении плодовитости коров как зарубежной, так и отечественной селекции.

Литература

- Сакса Е.И., Барсукова О.Е. Влияние уровня молочной продуктивности на плодовитость коров // Зоотехния. 2007. № 11. С. 23–26.
- 2. Митяшова О., Оборин А., Чомаев А. Воспроизводство в высокопродуктивных стадах // Животноводство России. 2008. № 9. С. 45–46.
- Зубец М.В., Буркат В.П., Сирацький Й.З., и др. Методы селекции украинской чёрно-рябой молочной породы. М.: 2005. С. 243–257.
- 4. Бане А., Бонадонна Т. Воспроизведение и нарушение воспроизводительных функций у домашних животных: руководство по разведению животных / Пер. с нем. М.: Сельхозиздат, 1963. Т. 1. С. 70–1732.
- Ваттио М. Воспроизводство и генетическая селекции. Висконсин, 1996. 170 с.
- Сирацький И.З., Меркушино В.В., Костенко А.И., Евтух И.С., Шапирко В.В., Романенко Л.И. Изучение биологических особенностей. Приспособленность животных к условиям содержания и эксплуатации путём нахождения индекса адаптации // Вестник аграрной науки. 1994. № 2. С. 46—52.
- 7. Богданов Г.А., Винничук Д.Т., Трофименко А.Л. Методы формирования голштинской породы молочного скота. К.: Урожай, 1985. 80 с.
- Дыбан А.П. Цитогенетические аспекты нормального и патологического эмбриогенеза млекопитающих // Проблемы генетики развития. М.: Наука, 1972. С. 62–85.