Использование *Artemisia absinthium* L. (сем. *Asteraceae*) степной зоны оренбургского Предуралья в современной фитотерапии

Н.Ф.Гусев, д.б.н., профессор, **Ю.А. Докучаева**, аспирантка, **А.Г. Клунов**, студент, Оренбургский ГАУ

Одной из актуальных проблем биологии и медицинской практики является поиск новых источников лекарственного растительного сырья, необходимого для увеличения ассортимента лекарственных средств. При этом известно, что в настоящее время более одной трети лекарственных препаратов изготавливается из растений или с участием веществ растительного происхождения [1, 2].

Использование растений в современной терапии связано с наличием в их сырье биологически активных веществ (БАВ) и микроэлементов, обладающих активностью и оказывающих терапевтическое действие.

Преимущество фитопрепаратов перед синтетическими лекарственными средствами заключается в их мягкости действия и малой токсичности.

Одним из регионов РФ, обладающих определённой ресурсной базой лекарственных растений, является степная зона оренбургского Предуралья, где в биоценозах доминируют виды, обладающие признаками ксероморфизма [3, 4]. Среди мезофитов и преобладающего числа ксерофитов в виде растительных сообществ, особенно в чистых районах региона, значительное распространение имеют растения рода *Artemisia* L., насчитывающие более 20 видов [5]. Одним из растений рода, широко распространённых по всей области, является *Artemisia absinthium* L. — полынь горькая.

Трава полыни горькой широко применяется в современной фитотерапии и ветеринарии [6].

Однако в связи с часто изменяющейся экологической ситуацией в местах обитания вида, влияющих на синтез и накопление БАВ в сырье растения, на региональном уровне не изучена. Так, не исследовано сырьё полыни на содержание микроэлементов, в частности тяжёлых металлов, обладающих повышенной дозой токсичности (превышающих соответственные нормативы).

При этом известно, что ценность лекарственного растительного сырья определена его качеством и наличием комплекса БАВ, оказывающих лечебное лействие.

Цели исследования.

- 1. Изучение содержания биологически активных веществ в сырье *Artemisia absinthium* L., встречающегося в различных экологических условиях.
- 2. Исследование содержания в растении (трава) химических элементов, в частности серы и тяжёлых металлов, что определяет качество лекарственного растительного сырья.

Материалы и методы исследования. Для исследования было взято растительное сырьё — надземная часть (трава) полыни горькой, собранная в период цветения в двух местообитаниях: в зоне влияния Оренбургского газоперерабатывающего завода ООО «Газпром добыча Оренбург» и в контрольной зоне — окрестностях с. Юзеева Шарлыкского р-на (табл. 1).

Полынь горькая (Artemisia absinthium L.) — многолетнее травянистое растение семейства Asteraceae

Местообитание вида	Химический элемент, мг/кг сухого вещества						% %	тн С,	овая серы, %
	Zn	Cu	Pb	Mn	Cd	Fe	Эфирно масло,	Витами мг %	Массон
Контроль, остепнённые луга (окр. с. Юзеева Шарлыкский район)	4,122	0,241	0,074	0,269	0,052	7,360	1,8	0,18	0,33
Остепнённые луга (окр. ОГПЗ, Оренбургский район, зона влияния ОГПЗ)	3,102	0,239	0,063	0,248	0,040	8,361	1,03	0,27	0,44

Содержание химических элементов и БАВ в листьях Artemisia absinthium L.

Примечание: окр. – окрестности; ОГПЗ – Оренбургский газоперерабатывающий завод

(астровые) относится к группе мезоксерофитов и как рудерант в Оренбургской области распространено повсеместно.

Трава полыни горькой и её листья (Herba et folia Artemisiae absinthii) представляют собой официальное лекарственное сырьё. Растение содержит горькие гликозиды: абсинтин и анабсинтин, флавоноиды, органические кислоты (яблочная, янтарная). Все надземные части растения содержат эфирное масло (до 0,5%), основными компонентами которого являются кислородные производные бициклических терпенов (туйон и туйол), моноциклических терпенов (фелландрен) и бициклических сесквитерпенов — кадинен. Наиболее горькое вещество в траве полыни — абсинтин, при расщеплении которого образуются различные азулены, обладающие терапевтическим действием [7, 8].

Горечи, содержащиеся в растениях, по своей природе являются гликозидами и издавна применяются в качестве лекарственных средств, возбуждающих аппетит и тем самым улучшающих пищеварение.

Трава полыни представляет классическое горько-пряное желудочное средство, возбуждающее аппетит. Препараты растения — настойку, настой, чай, экстракт — применяют для усиления деятельности пищеварительных органов.

Эфирное масло полыни обладает противовоспалительным действием, а выделенный из травы ненасыщенный углеводород — капиллин, по исследованиям японских учёных, проявляет антибиотическое действие.

Трава полыни — составная часть аппетитных чаёв и желчегонных сборов. Эфирное масло полыни находит применение в пищевой, парфюмерной и ликёро-водочной промышленности.

Для определения содержания химических микроэлементов в растительном сырье мы использовали атомно-абсорбционный метод, а наличие серы определяли методами, принятыми в кормопроизводстве. Определение содержания витамина С и эфирных масел в сырье определяли согласно ГОСТу.

Результаты исследования. По результатам исследования в сырье травы полыни обнаружены доминирующие химические элементы Zn, Cu, Pb, Mn, Cd, Fe, относящиеся к группе тяжёлых

металлов (табл.). Указанные элементы в оптимальных количествах входят в состав активного центра важнейших ферментов и являются эссенциальными для растений и живых организмов [9, 10].

Незначительное превышение микроэлементов (кроме железа) отмечено в растениях, произрастающих в экологически чистой зоне (Шарлыкский р-н Оренбуржья), что, видимо, связано с почвенно-геологическими условиями местности и экологическими факторами.

Оренбургский ГПЗ является основным источником выброса диоксида серы и пылевых частиц серы. Исследования выявили превышение серы на 25% в сырье полыни, встречающейся в зоне влияния предприятия по сравнению с растениями, произрастающими в Шарлыкском районе (табл.).

Значительное превышение эфирного масла отмечено в сырье растений, собранных в Шарлыкском районе, по сравнению с зоной влияния промышленных поллютантов, что позволяет считать указанную территорию экологически чистой зоной (табл.).

Содержание витамина С в сырье вида очень незначительное, однако несколько превышено в растениях, встречающихся в зоне влияния промышленных поллютантов завода. При этом ранее установлено, что растения в ответ на стресс индуцируют синтез аскорбиновой кислоты, что является защитной реакцией организма.

Выводы. 1. Полынь горькая, встречающаяся в различных местах обитания степной зоны оренбургского Предуралья, аккумулирует микроэлементы: Zn, Cu, Pb, Mn, Cd, Fe, относящиеся к тяжёлым металлам и доминирующие в растительном сырье.

- 2. Содержание тяжёлых металлов в надземных органах полыни горькой, встречающейся в различных условиях, не превышает (за исключением кадмия) предельно допустимых концентраций загрязнителей.
- 3. Содержание эфирного масла в полыни горькой, встречающейся в экологически чистой зоне (контроль), превышено, что позволяет считать указанную территорию более благоприятной для заготовки лекарственного растительного сырья.

4. Для получения экологически чистого лекарственного растительного сырья полыни горькой, необходимой для использования в фитотерапии, следует интродуцировать вид в степной зоне региона.

Литература

- 1. Государственный реестр лекарственных средств. Т. 1. М.: Минэдрав России. Фонд фармацевтической информации, 2001. 1277 с.
- 2. Муравьёва Д.А. Фармакогнозия: учебник. М.: Медицина, 1991. 560 с.
- 3. Гусев Н.Ф., Петрова Г.В., Немерешина О.Н. Лекарственные растения Оренбуржья (ресурсы, выращивание и использование). Оренбург: Изд. центр ОГАУ, 2007. 332 с.
- Гусев Н.Ф., Немерешина О.Н., Петрова Г.В. и др. Лекарственные и ядовитые растения как фактор биологического риска: монография. Оренбург: Изд. центр ОГАУ, 2011. 400 с.

- ГОСТ 30642-2000. Атомно-абсорбционный метод определения тяжёлых металлов. Межгосударственный стандарт. Минск, 2000.
- ГОСТ 2455.6-89. Метод определения содержания витамина С. М., 1989.
- ГОСТ 24027.2-80. Метод определения содержания в растительном сырье экстрактивных веществ, флавоноидов, дубильных веществ и эфирных масел. М., 1980.
- 8. Машковский М.Д. Лекарственные средства. М.: Новая волна, Изд. Умеренков, 2008. 337 с.
- Методические указания по определению серы в растениях и кормах растительного происхождения. М.: ФГНУ «Росинформагротех». 2004.
- корыма растинельного произождения. Ил. 47113 что синформагротех», 2004.

 10. Немерешина О.Н., Гусев Н.Ф. К вопросу изучения антиокислительной защиты высших растений в условиях влияния атмосферных выбросов предприятий Газпрома // Известия Оренбургского государственного аграрного университета. 2011. № 2 (30). С. 218—224.