Конкурентные отношения сосновых древостоев в рекреационных лесопарковых насаждениях г. Екатеринбурга*

С.А. Шавнин, д.б.н., профессор, **В.А. Галако**, к.с.-х.н., **В.З. Власенко**, к.б.н., Ботанический сад УрО РАН

Количественная оценка взаимоотношений между деревьями, их роста или отпада в результате влияния факторов среды, техногенных или антропогенных факторов может быть проведена на основании определяемых индексов конкуренции [1],

характеризующих влияние размеров соседей (конкурентов) на модельные деревья. Для расчёта индексов конкуренции используется отношение таксационных показателей конкурента к таксационным показателям центрального дерева [2]. Как правило, в большинстве эмпирических индексов в качестве переменной используют диаметр на высоте груди, диаметр кроны дерева, реже — высоту

^{*} Работа выполнена при финансовой поддержке программ интеграционных проектов Президиума УрО РАН (проект 12-И-4-2057).

дерева, ещё реже — объём ствола. В частности, большинством авторов было предложено в качестве индекса конкуренции использовать сумму отношений диаметров соседних (конкурирующих) деревьев к центральному дереву [3].

Уровень конкуренции деревьев в насаждении обусловлен плотностью центральных и количественных параметров конкурирующих деревьев [4]. Таким образом, индекс конкурентных отношений может выражаться следующим образом:

$$\begin{split} KK1 &= \sum D_{1.3j}/D_{1..3i}; \\ KK2 &= \sum H_{j}/H_{i}; \\ KK3 &= \sum D_{kpj}/D_{kpi}, \end{split}$$

где KK1 — индекс конкурентных отношений по диаметру на высоте 1,3 м;

КК2 – индекс конкурентных отношений по высоте;

КК3 – индекс конкурентных отношений по диаметру кроны;

 $\Sigma D_{1.3j}$ — сумма диаметров на высоте 1,3 м (см) конкурирующих деревьев (см);

 $\Sigma H_{j,}$ — сумма высот конкурирующих деревьев (м);

 Σ Dкрј — сумма диаметров крон конкурирующих деревьев (м);

 $D_{1..3i}$ — диаметр на высоте 1,3 м центрального дерева (см);

 H_i — высота центрального дерева (м);

 $D_{\text{крі}}$ — диаметр кроны центрального дерева (м).

Материал и методы исследований. Исследования по обоснованию методов расчёта индексов конкурентных отношений базировались на материалах, полученных на постоянных пробных площадях (ППП), расположенных в насаждениях лесопарковой зоны г. Екатеринбурга. Насаждения представлены сосновыми древостоями V—VII классов возраста.

На ППП был проведён сплошной перечёт деревьев с их нумерацией, определением диаметров стволов на высоте 1,3 м в двух перпендикулярных направлениях. Кроме того, на пробных площадях замерены высоты всех деревьев с точностью до 0,1 м, проекции и протяжённость крон деревьев. Проведено картирование древостоя на ППП. Для определения возраста деревьев получены керны с помощью возрастного бурава. Всего было обследовано с этой целью 18 постоянных пробных площадей.

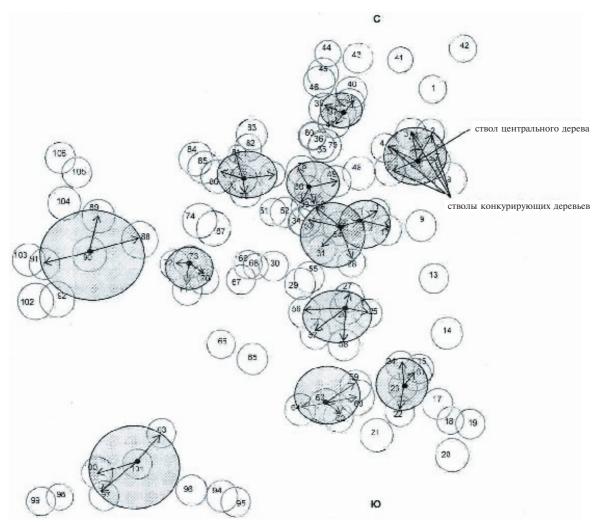


Рис. – Определение индекса конкурентных отношений (ППП 4): в кружке – номера деревьев; стрелками обозначены радиусы влияния крон

При проведении картирования на каждой ППП были определены оптимальные радиусы зон влияния для подобранных модельных деревьев на основании выделяемых зон роста дерева [5] и проведены замеры расстояний до центральных (модельных) деревьев по радиусам их влияния (рис. 1).

Результаты и их обсуждений. На основании полученных распределений деревьев в соответствии с 5-метровыми радиусами влияния определены индексы конкурентных отношений на ППП (табл. 1), а также их коэффициенты вариации. Всего было исследовано три варианта определения конкурентных отношений: по диаметру ствола на высоте груди, по высоте дерева и диаметру кроны деревьев. Статистический анализ показал, что все показатели конкуренции репрезентативны.

Результаты определения индекса конкурентных отношений, приведённые в таблице 1, позволили установить диапазон изменения показателей конкуренции в пределах от 2,61 до 6,89 для диаметров стволов на высоте 1,3 м и от 2,94 до 6,78 — для диаметров крон. Примерно равные значения показателей конкуренции свидетельствуют об идентичности определения индексов конкурентных отношений. В пределах пробных площадей коэффициент вариации индекса конкурентных отношений колеблется в пределах от 18 до 54% (табл. 1).

Данный показатель служит характеристикой пространственного размещения деревьев в насаждении, их жизненного состояния, а также показателем интенсивности рекреационной нагрузки на ППП [6]. Более чёткую картину по определению степени влияния нагрузок рекреационного и техно-

генного характера даёт фактор конкуренции крон (табл. 1). Жизненное состояние деревьев можно определить по среднему баллу повреждённости деревьев, росту степени дефолиации крон [7]. По приведённым шкалам сосновые древостои на ППП №7-9 можно охарактеризовать как слабоповреждённые, близкие к фоновым. Индекс жизненного состояния деревьев составляет - 2,1-2,4, дефолиация — до 30%, срок жизни хвои — 2,8 года. По результатам геоботанического картирования на данных ППП общая доля антропогенно нарушенных участков не превышает 5%. На пробных площадях № 10–12, 23 древостои сосны по данной шкале [8] можно охарактеризовать как средне и сильно ослабленные. Индекс жизненного состояния 3,0, дефолиации — более 40%, срок жизни хвои — 2года. На этих пробных площадях, испытывающих антропогенное воздействие, нарушено в той или иной степени от 10 до 40% площади. Полученные выводы подтверждаются вычисленными индексами конкурентных отношений. Так, на ППП № 10–12, 23, испытывающих наиболее сильные рекреационные нагрузки, наиболее низкий показатель конкурентных отношений, составляющий 3,21-3,91, что свидетельствует о слабой конкуренции в древостое. На контрольных ППП № 7–9 конкуренция более сильная, показатель конкуренции находится в пределах 4,5-6,16.

На графиках (рис. 2, 3) можно проследить зависимость индексов конкурентных отношений от изменения значений таксационных показателей модельных и конкурирующих деревьев по диаметру ствола на высоте 1,3 м и диаметру кроны. С увеличением данных показателей индекс конкурентных отношений снижается, что характери-

1. Индексы конкурентных отношений сосновых древостоев в рекреационных насаждениях г. Екатеринбурга

№ ППП	Число стволов, N/га	Средний диаметр (Д _{1,3}), см	Индекс конкурентных отношений по $Д_{1,3}$ ствола	Коэффициент вариации индекса конкурентных отношений по $Д_{1,3}$ ствола, %	Индекс конкурентных отношений по Д кроны	Коэффициент вариации индекса конкурентных отношений по Д кроны, %
1	313	39,6±0,59	5,74±0,599	37,03	6,00±0,545	32,78
2	285	42,5±0,63	4,68±0,403	27,24	4,96±0,505	32,20
3	226	45,4±0,74	4,40±0,339	24,36	4,28±0,324	23,99
4	215	47,5±0,77	3,65±0,261	22,57	4,16±0,303	23,29
5	339	40,1±0,59	4,70±0,276	18,55	4,86±0,378	23,31
6	298	42,8±0,63	4,68±0,617	41,67	4,87±0,835	54,25
7	331	38,7±0,58	5,55±0,462	26,32	6,16±0,587	30,16
8	434	38,9±0,54	4,84±0,543	35,45	4,42±0,624	31,61
9	448	36,0±0,49	6,05±0,560	29,29	5,91±0,408	21,82
10	264	48,9±0,72	3,29±0,553	53,06	3,49±0,566	51,24
11	213	45,5±0,72	3,21±0,386	43,55	2,94±0,294	31,64
12	251	46,0±0,70	3,91±0,403	32,21	3,88±0,464	37,80
13	427	32,8±0,42	4,73±0,357	18,47	4,94±0,583	28,93
19	544	35,4±0,41	6,14±0,657	21,40	5,95±0,530	17,41
23	254	44,6±0,68	2,61±0,439	53,17	3,09±0,500	51,22
26	240	46,4±0,69	5,02±0,932	41,49	3,98±0,955	53,68
30	537	31,0±0,36	5,67±0,794	34,32	5,47±0,997	44,68
32	494	34,0±0,40	6,89±0,995	32,29	6,78±1,458	43,01

2.	Модель	индекса	конку	рентных	ОТНО	шений	древостоев	сосны
	В	лесопари	ковых	насажден	иях і	: Екате	ринбурга	

№	Уравнение регрессии индекса конкурентных отношений с Д _{1,3} ствола	Коэффициент корреляции индекса конкурентных отношений с $Д_{1,3}$ ствола	Уравнение регрессии индекса конкурентных отношений с Д кроны дерева	Коэффициент корреляции индекса конкурентных отношений с Д кроны дерева
1	$\text{ИK} = 17,8568 - 0,4276 \text{Д}_{1,3} + 0,0031 \text{Д}_{1,3}^2$	-0,892±0,136	$ИK = 16,9176 - 1,5542 Дкр + 0,0275 Д_{кр}^2$	-0,839±0,1721
2	$\text{ИK} = 52,5414 - 2,0991 \text{Д}_{1,3} + 0,0227 \text{Д}_{1,3}^2$	-0.078 ± 0.052	$ИK = 9,9896 - 0,6132Д_{kp}$	-0,602±0,2834
3	$\text{ИK} = 10,3695 - 0,2245 \text{Д}_{1,3} + 0,002 \text{Д}_{1,3}^2$	-0,359±0,129	$ИK = 8,0401 - 0,4616Д_{\kappa p}$	-0,480±0,3101
4	$ИK = 0.5958 + 0.152Д_{1,3} - 0.0017Д_{1,3}^2$	-0,491±0,147	$ИK = 6,1845 - 0,2531 Д_{\kappa p}$	-0,418±0,3212
5	$ИK = 3,8844 + 0,1001 \mathring{\Pi}_{1,3} - 0,002 \mathring{\Pi}_{1,3}^2$	-0,378±0,127	$ИK = 7,680 - 0,3801 Д_{kp}$	-0,522±0,3223
6	$ИK = 28,8218 - 0,9977 Д_{1,3} + 0,0092 Д_{1,3}^2$	-0,785±0,219	$ИK = 23,5817 - 4,0083 Д_{kp} + 0,1998 Д_{kp}^2$	-0,872±0,0846
7	$ИK = 17,3811 - 0,4325 Д_{1,3} + 0,0034 Д_{1,3}^2$	-0,859±0,181	$\text{ИK} = 20,6987 - 4,2057 \text{Д}_{\text{кр}} + 0,2729 \text{Д}_{\text{кр}}^2$	-0,757±0,2311
8	$ИK = 22,7206 - 0,9432 Д_{1,3} + 0,0116 Д_{1,3}^2$	-0,729±0,242	$ИK = 13,7269 - 2,0201 Д_{kp} + 0,0979 Д_{kp}^{2}$	-0,535±0,2987
9	$\text{ИK} = 7,0555 + 0,1671 \text{Д}_{1,3} - 0,0055 \text{Д}_{1,3}^2$	-0,848±0,184	$\text{ИK} = 6.0183 + 0.6538 \text{Д}_{\text{kp}} - 0.0915 \text{Д}_{\text{kp}}^2$	-0,788±0,1338
10	$ИK = -1,9681 + 0,4224 \Pi_{1,3} - 0,0066 \Pi_{1,3}^2$	-0,585±0,187	ИК=8,1437-0,4934Д	-0,588±0,2861
11	ИК= $12,2113-0,3119$ Д _{1,3} + $0,0023$ Д ² _{1,3}	-0,815±0,205	$ИK = 6,0268 - 0,3259Д_{KD}^{T}$	-0,782±0,2202
12	$ИK = -10,7108 + 0,8316 \mathring{\Pi}_{1,3} - 0,0113 \mathring{\Pi}_{1,3}^2$	-0,414±0,198	$ИK = 6,5351 - 0,3541 Д_{KP}$	-0,246±0,3378
13	$ИK = -45,1452 + 3,0803 Д_{1,3} - 0,0469 Д_{1,3}^2$	-0,804±0,297	$ИK = 11,0178 - 1,9933 Д_{кр}^{\dagger} + 0,1336 Д_{кр}^{2}$	-0,789±0,3054
19	$\text{ИK} = 75,9313 - 3,8027 \text{Д}_{1,3} + 0,051 \text{Д}_{1,3}^2$	$-0,760\pm0,251$	$ИK = 3,1710 + 2,4279 Д_{KP} - 0,4480 Д_{KP}^2$	-0,921±0,2785
23	$\text{ИK} = 5,6629 + 0,0088 \text{Д}_{1,3} - 0,0016 \text{Д}_{1,3}^2$	-0,689±0,256	$ \text{ИK} = 4,4824 + 0,3361 \text{Д}_{KD}^{\text{-}} - 0,0748 \text{Д}_{KD}^{\text{2}}$	-0,597±0,2836
26	ИК=32,186-1,1 $\Pi_{1,3}$ +0,0105 $\Pi_{1,3}^2$	-0,633±0,155	$ИK = 8,3977 - 0,1034 Д_{kp}^{7} - 0,0786 Д_{kp}^{2}$	-0,869±0,2859
30	ИК= $89,402-4,6415$ Д _{1,3} + $0,063$ Д ² _{1,3}	-0,564±0,113	$\text{ИK} = 44,9022 - 10,4373 \text{Д}_{\text{kp}} + 0,6613 \text{Д}_{\text{kp}}^2$	-0,713±0,3505
32	$\text{ИK} = 39,0529 - 1,7539 \vec{\Pi}_{1,3} + 0,0227 \vec{\Pi}_{1,3}^2$	-0,849±0,205	ИК=14,2903-1,5688Дкр	-0,849±0,3054

зуется отрицательным значением коэффициента корреляции и уравнением регрессии параболы 1-го и 2-го порядка (табл. 2).

Полученные результаты исследований позволяют прогнозировать необходимую структуру древостоя, моделировать процесс изреживания насаждений при проведении хозяйственных мероприятий.

Литература

1. Касаткин А.С., Усольцев В.А., Семышев М.М. Классификация индексов конкуренции в древостоях // Лесное хозяйство и зелёное строительство в Западной Сибири: матер. IV Международного интернет-симпозиума, г. Томск. Томск, 2009. С. 108–113.

- Сеннов С.Н. Итоги экспериментального изучения конкуренции в древостоях // Известия Санкт-Петербургской лесотехнической академии. СПб., 1993. С. 160–172.
- лесотехнической академии. СПб., 1993. С. 160–172.

 3. Кузьмичев В.В., Миндеева Т.Н., Черкашин В.В. Оценка взаимодействия деревьев в лесных фитоценозах // Известия Сибирского отделения АН СССР. 1989. Вып. 3. С. 133–139.
- Смольянова Л.П., Вайс А.А., Смольянов А.С. Определение объёма отдельного дерева с учётом индекса конкуренции // Вестник СибГТУ. Красноярск. 1999. № 2. С. 24–25.
- Тябера А.П. Площадь роста дерева и её определение аналитическими способами // Лесной журнал. 1978. № 2. С. 12–16.
- 6. Бузыкин А.Н. и др. Анализ структуры древесных ценозов. Новосибирск: Наука. 1985. 93 с.
- 7. Санитарные правила в лесах России. М.: Наука, 1998. 16 с.
- Методика организации и проведения работ по мониторингу лесов европейской части России по программе ICP
 – Forest (методика ЕЭК ООН). М., 1995. 42 с.