Исходный материал для селекции люцерны на повышение семенной продуктивности

В.Ф. Казарин, д.с.-х.н., **И.А. Володина**, н.с., Поволжский НИИСС

Одним из важнейших показателей ценности сорта люцерны является высокая семенная продуктивность, без которой невозможно дальнейшее расширение посевных площадей.

Из селекционной и производственной практики известно, что у люцерны продуктивность кормовой массы и семян находится в обратной корреляционной зависимости. Тем не менее популяции, полученные в последние годы в Поволжском НИИСС, отличаются не только высокой продуктивностью кормовой массы, но и тенденцией к повышению репродукционной способности.

Целью данной работы является изучение и оценка селекционной ценности сортопопуляций люцерны, а также выделение нового исходного материала для создания сортов люцерны с высоким потенциалом урожайности семян.

Объекты и методы исследований. Исследования проведены на экспериментальном селекционном севообороте Поволжского НИИСС в 2011-2013 гг. Объектом изучения являлись 13 популяций люцерны, созданных методом поликросса с последующим биотипическим отбором, т.е. объединением поликроссных потомств по специфическим признакам: типу корневой системы, габитусу растений, форме бобов и т.д. [1-3].

За стандарт принят районированный сорт люцерны местной селекции Куйбышевская, агротехника общепринятая для люцерны, повторность четырёхкратная с площадью делянок 10 м². Полевые опыты сопровождались необходимыми наблюдениями, учётами и анализами, которые выполнялись в соответствии с методическими указаниями [4, 5].

Статистическую обработку результатов, в частности дисперсионный и корреляционный анализ, проводили по Б.А. Доспехову.

Почвенный покров участка представлен типичным среднегумусным чернозёмом тяжелосуглинистого механического состава. Содержание легкогидролизуемого азота в пахотном слое 11,6-13,2 мг, подвижного фосфора -15,8-19,5 и калия -14,5-20,1 мг на 100 г почвы.

Погодные условия в годы исследований резко различались, что позволило провести более пол-

ную оценку хозяйственно-биологических свойств селекционного материала как в благоприятных по увлажнению, так и в засушливых условиях (табл. 1).

Температурный режим весеннего периода 2011 г. повышался постепенно, переход температуры воздуха через 10°C отмечался в обычные сроки -28 апреля. Влажная и умеренно тёплая погода первой и второй декад апреля способствовала медленному и постепенному подсыханию и прогреванию пахотного слоя почвы. Май и июнь 2011 г. характеризовались в целом умеренным температурным режимом и неравномерным выпадением осадков. Так, после посева конкурсного сортоиспытания (КСИ-11) в течение восьми дней выпало 86,8 мм осадков, что способствовало получению равномерных и дружных всходов, а также дальнейшему росту и развитию растений. Гидротермический коэффициент (ГТК) в июне равнялся 2,0. Июль был жарким (средняя температура воздуха на 4°C выше нормы) и засушливым, ГТК = 0,1. Сумма активных температур за период вегетации (с 01.06 по 30.09.2011 г.) составила 2229,5°C, что близко к среднемноголетнему показателю. В целом 2011 г. можно отнести к благоприятным для роста и развития растений люцерны.

Весна 2012 г. выдалась очень ранняя и скоротечная. Сумма активных температур в апреле была 362,3°С, что в 3 раза выше среднемноголетнего значения (109,0°С). В сложившихся условиях посев второго цикла конкурсного сортоиспытания (КСИ-12) был проведён в максимально ранние сроки (8 мая) с целью получения семян в год посева. Сумма активных температур от посева до уборки семян составила 2612,8°С, что вполне достаточно для успешного созревания семян [6].

В связи с повышенными среднесуточными температурами апреля развитие люцерны проходило более интенсивно и фаза цветения наступила на 7–10 дней раньше. Во время цветения стояла сухая и тёплая погода, благоприятная для лёта естественных опылителей люцерны. Дожди, прошедшие 22–23 июня (49,8 мм) способствовали завязыванию бобов.

В 2013 г. начало отрастания люцерны проходило в обычные сроки (III декада апреля). Несмотря на хорошую суммарную влагообеспеченность года, наблюдалась ранневесенняя и летняя засуха. Так,

1. Метеорологические условия за вегетационный период

Поморожени	Год					
Показатель	2011	2012	2013	Среднемноголетние		
Сумма положительных температур, °С	2229,5	3070,8	1935,0	2702,0		
Осадки, мм	373,4	197,6	97,0	234,0		
Гидротермический коэффициент (ГТК)	1,7	0,6	0,1	0,9		

за период с 6 мая по 26 июля количество осадков составило лишь 38 мм, что почти в 3 раза ниже нормы.

Такие жёсткие погодные условия весенне-летнего периода способствовали сокращению вегетационного периода у большинства образцов люцерны. Уборку семян проводили в III декаде июля.

Результаты исследований. Высокоурожайная сложногибридная популяция люцерны возможна при условии, если её производные будут обладать хорошей общей комбинационной способностью и разнородной генетической структурой, которые являются основой высокой жизнеспособности и продуктивности создаваемой популяции.

В среднем за три года пользования по сбору сухого вещества высокую ОКС имели потомства популяций: Тёмно-зелёная, Изумруда и Популяция 13, превышение над средней ОКС по опыту у них

составляло 10,6; 14,6; 20,0% соответственно, у пяти номеров была средняя ОКС, остальные популяции показали низкую ОКС (табл. 2).

Урожайность семян растений люцерны определяется комплексом количественных признаков: число соцветий на растении, число бобов в соцветии, число семян в бобе и масса 1000 семян.

Количество соцветий на растении — один из главных элементов урожайности люцерны. В среднем за два года исследований этот признак у изучаемых образцов варьировал от 18 до 43 шт. Среди изучаемых сортопопуляций в основном преобладали образцы со средним количеством соцветий на растении (20—25 шт.). При этом выделились три номера с наибольшим количеством соцветий — это Популяция (км) (42,7 шт.), Популяция 13 (32,9 шт.) и Популяция 4 (29,4 шт.) (табл. 3).

2. Оценка сортопопуляций люцерны на общую комбинационную способность (2011—2013 гг.)

Популяция	Сухое вещество, т/га	Эффект ОКС, %	Группа ОКС	Урожай семян, кг/га	Эффект ОКС, %	Группа ОКС
Куйбышевская, st	6,2	82,6	низкая	240,0	78,9	низкая
Популяция 4	8,0	106,6	средняя	310,0	102,8	средняя
Изумруда	8,2	114,6	высокая	360,0	119,4	высокая
Популяция 99	7,6	101,3	средняя	270,0	90,6	низкая
Гюзель (СП-03)	7,2	96,0	низкая	310,0	104,1	средняя
Популяция (км)	6,5	86,6	низкая	280,0	92,7	низкая
Популяция 24	7,2	96,0	низкая	230,0	76,9	низкая
Популяция 7	7,3	97,3	низкая	310,0	102,8	средняя
Популяция 8	7,7	102,6	средняя	310,0	102,9	средняя
Популяция 2	6,6	88,0	низкая	340,0	111,7	высокая
Популяция супер	7,8	104,0	средняя	300,0	99,4	низкая
Тёмно-зелёная	9,0	120,0	высокая	320,0	106,7	средняя
Тат. пастб. СП-03	7,6	101,3	средняя	290,0	96,5	низкая
Популяция 13	8,3	110,6	высокая	350,0	114,5	высокая
Среднее по опыту	7,5			300,0		
HCP ₀₅	0,6			0,20		

3. Элементы семенной продуктивности у сортопопуляций люцерны (2012-2013 гг.)

Популяция	Кол-во соцветий на 1 побег, шт.	Эффект ОКС, %	Кол-во бобов в соцве- тии, шт.	Эффект ОКС, %	Кол-во семян на 1 боб, шт.	Эффект ОКС, %	Масса 1000 семян, г	Эффект ОКС, %
Куйбышевская, st	20,3	78,9	11,85	89,7	2,67	86,1	2,16	97,3
Изумруда	21,8	84,8	13,20	100,0	3,29	106,1	2,22	99,1
Популяция 4	29,4	114,4	16,90	128,0	3,43	110,6	2,20	100,0
Популяция 99	26,1	101,6	13,74	104,1	3,11	100,0	2,15	96,9
Гюзель (СП-03)	25,8	100,4	13,07	99,0	3,72	120,0	2,24	100,9
Популяция (км)	42,7	166,1	12,92	97,8	2,15	69,4	2,29	103,2
Популяция 24	25,1	97,6	9,68	73,3	1,74	56,1	2,21	99,6
Популяция 7	25,9	100,7	13,98	105,9	2,79	90,0	2,27	102,3
Популяция 8	18,1	70,4	12,69	96,1	3,61	116,5	2,16	97,3
Популяция 2	19,2	76,2	14,58	110,5	3,02	97,4	2,26	101,8
Популяция супер	23,6	91,8	11,43	86,6	3,27	105,5	2,17	97,8
Тёмно-зелёная	27,6	107,4	10,19	77,2	3,83	123,5	2,26	101,8
Тат. пастб. СП-03	21,6	84,0	14,35	108,7	3,39	109,4	2,20	99,1
Популяция 13	32,9	128,0	16,08	121,8	3,49	112,5	2,32	104,5
Среднее по опыту	25,7		13,20		3,10		22,20	
HCP ₀₅	0,36		0,27		0,06		0,03	

В среднем за годы исследований количество бобов в соцветии варьировало от 9 до 17 шт. Образцы, изучавшиеся в конкурсном сортоиспытании, в основной массе имели 11—13 бобов в соцветии. Популяция 4, Популяция 13 и Популяция 2 имели 16,90, 16,08 и 14,58 шт. бобов в соцветии соответственно и высокую ОКС.

Немаловажное значение в повышении урожайности семян люцерны имеет количество семян в бобе. Среди изучаемых образцов преобладали формы со средним количеством семян 2—3 шт. на 1 боб. Тем не менее в процессе работы были выделены шесть номеров образцов люцерны, у которых в бобах количество семян было больше 7 шт., это Изумруда, Популяция 4, Гюзель (СП-03), Популяция 8, Тёмно-зелёная и Популяция 13. При этом данные сортопопуляции имели высокую ОКС с превышением над средней по опыту от 10 до 23%.

Урожайность семян люцерны имеет среднюю положительную зависимость от количества соцветий на 1 побег и количества бобов в соцветии, r=0,532 и r=0,582. Проведёный корреляционный анализ между количеством соцветий и количеством бобов в соцветии и между количеством бобов и количеством семян на 1 боб показал, что связь была слабой положительной r=0,166 и r=0,328.

По массе 1000 семян высокую ОКС в двух циклах исследований показало потомство Популяции 13 с превышением над средней по опыту 3,7-5,2%. Масса 1000 семян положительно коррелировала с урожаем семян r=0,443.

Таким образом, на основании оценки поликроссных потомств на общую комбинационную способность выявлены перспективные номера популяций, сочетающие в себе высокую кормовую и семенную продуктивность. При изучении показателей, влияющих на семенную продуктивность, выделены образцы люцерны с наиболее крупными семенами. Поликроссные формы с высокой ОКС включаются в питомники переопыления в качестве компонентов синтетического сорта. Кроме того, выявлены ценные поликроссные гибриды с высокой степенью гетерозиса, обеспечивающие стабильную продуктивность как в благоприятные, так и в засушливые и острозасушливые годы. Это позволяет использовать их для формирования стрессоустойчивых сложногибридных популяций.

Литература

- Володина И.А., Абраменко И.С., Лапина М.Ш. и др. Оценка образцов люцерны изменчивой по продуктивности в лесостепи Среднего Поволжья // Кормопроизводство. 2012. № 11. С. 27–29.
- Колганова Н.В., Ткаченко И.К. Комбинационная ценность образцов люцерны по признакам кормовой и семенной продуктивности // Кормопроизводство. 2006. № 12. С. 15–16.
 Терещенко Н.М. О селекции люцерны поликросс-мето-
- Терещенко Н.М. О селекции люцерны поликросс-методом // Селекция и семеноводство. 1974. № 1. С. 28–29.
 Глуховцев В.В., Кириченко В.Г., Зудилин С.Н. Практикум
- Глуховцев В.В., Кириченко В.Г., Зудилин С.Н. Практикум по основам научных исследований в агрономии. М.: Колос, 2006. 248 с.
- Методика государственного сортоиспытания сельскохозяйственных культур. Вып.1. М., 1985. 270 с.
- Володина Й.А., Казарин В.Ф., Абраменко И.С. Получение семян люцерны со второго укоса в условиях юга лесостепи Среднего Поволжья // Кормопроизводство в современных условиях и пути его интенсификации: матер. всеросс. науч.практич. конф. РАСХН, Татарский НИИСХ, Министерство с.-х. и продовольствия. Казань, 2011. С. 75–79.