Влияние глубины водоёмов на их биоэкологические параметры

Д.К. Кожаева, к.б.н., **С.Ч. Казанчев**, д.с.-х.н., профессор, **Д.В. Жантеголов**, аспирант, Кабардино-Балкарский ГАУ

Значение рыбоводства во внутренних водоёмах возрастает в связи со значительным снижением запасов наиболее ценных в пищевом отношении морских рыб.

В связи с этим перед прудовым рыбоводством стоит задача дальнейшего наращивания высоко-интенсивных ресурсосберегающих технологий, позволяющих значительно увеличить производство прудовой рыбы с единицы площади, без особого ввода в эксплуатацию новых площадей.

Рыбопродуктивность определяется комплексом факторов, которые особенно тесно связаны с глубиной и температурой воды.

Глубина водоёмов обусловливает многие физические и химические факторы, которые в свою очередь влияют на продукционно-биологические процессы различных водных организмов.

Проблема повышения биоэкологической продуктивности водоёмов в условиях плотных посадок вызывает необходимость определения оптимальных глубин водоёмов для каждой экологофенологической рыбоводной зоны Кабардино-Балкарской Республики.

Выбор критерия оценки природных ресурсов является сложной и ответственной задачей. От того, какой критерий выбран для оценки, зависят возможности её практического применения. В республике основной рыбой традиционного прудового рыбоводства является карп. В связи с этим объектом нашей оценки являются все рыбоводные карповые пруды, что весьма актуально.

Цель исследования — произвести оценку прудов, которая способствовала бы получению с каждого гектара как можно большего количества рыбной продукции.

В задачи исследований входила объективная оценка основных биоэкологических факторов, обусловливающих эффективность прудового рыбоводства.

Материалы и методы исследования. Для оценки биоэкологических факторов, обусловливающих эффективность прудового рыбоводства республики, были подобраны хозяйства с типичными для региона прудами, представляющие все пять эколого-фенологических рыбоводных зон (республика поделена на пять эколого-фенологических рыбоводных зон) [1], со средним уровнем ведения рыбоводства.

Среднюю рыбопродуктивность прудов определяли по данным за период не менее пяти лет, поскольку климатические условия в разные годы неодинаковые.

Колебания температуры воздуха изучали в течение пяти лет.

Для определения значимости отдельных факторов в комплексе данные обрабатывали методом многофакторной корреляции.

В качестве подопытного материала служили сеголетки и двухлетки карповых рыб (*Cyprinus carp* CO L).

Температуру воды измеряли специальным водным термометром три раза в сутки — в 8, 14 и 20 час. на глубине от 5 до 200 см. Ежедневно определяли уровень воды в прудах, при снижении уровня усиливали подачу воды [2].

Выращивание товарной рыбы проводили в монокультуре. Плотность посадки — от 3 до 5 тыс. экз/га.

Темп роста рыб на протяжении вегетационного сезона два раза в месяц изучали путём проведения контрольных отловов, при этом определяли весовые и линейные показатели [3]. Упитанность рыб определяли по Фультону.

Данные, полученные в результате исследований, подвергали вариационно-статистической обработ-ке [4]. На их основе определяли влияние указанных факторов на биопродуктивность водоёмов и сформулировали выводы и предложения.

Результаты исследований. Среднесуточная температура зоны является очень важным показателем при определении глубины прудов, однако остаются неучтёнными другие показатели, которые имеют большое значение, такие, как скорость ветров, климат, количество и характер осадков. В связи с этим этот фактор мы расценили как климатический и делали на него ставку, исходя из высказывания: «... при повышении температуры воды на 10°С жизненные процессы у рыб увеличиваются в 2—3 раза» [5].

Наши исследования, проведённые в 2000-2011 гг., показали, что в августе при сильном ветре и пасмурной погоде температура воды у поверхности пруда и на глубине 200 см была почти одинаковой во всех эколого-фенологических рыбоводных зонах (I—V). В июле при штилевой жаркой погоде у спускного монаха температура воды на глубине 1,0 м в 20 ч. снижалась на 3,9-6,9 в I—II зонах, а на глубине 1,5-2,0 м — на 5-5,9°C (табл. 1). В глубоком пруду (IV—V) при оптимальной температуре воды у поверхности (26-29°C) температура воды у дна может быть значительно ниже (15-18°C).

Такое снижение температуры воды в условиях республики может существенно сказываться на росте карпа.

В тёплой воде $-20-28^{\circ}$ С (V зона), просвечиваемой прямыми лучами солнца, наиболее интенсивно развивается фитопланктон. Такая температура

Эколого-	Глубина измерения, см	В	Средняя		
фенологическая рыбоводная зона		8	14	20	за вегетационный период
I	5	20,5±0,41	25,8±0,17	22,3±0,29	22,8±0,29
	50	18,3±0,31	22,6±0,13	21,4±0,16	20,7±0,21
	100	16,4±0,70	21,3±0,18	20,4±0,65	19,4±0,51
	150	15,1±0,65	21,0±0,91	19,5±0,14	18,5±0,55
	200	14,2±0,44	20,6±0,85	18,1±0,13	17,6±0,47
II	5	21,4±0,52	26,5±0,91	23,1±0,11	23,6±0,99
	50	20,6±0,21	25,1±0,19	22,2±0,10	22,6±0,16
	100	19,5±0,17	24,3±0,65	22,0±0,17	21,9±0,33
	150	18,1±0,23	22,9±0,62	21,2±0,70	20,7±0,52
	200	17,9±0,31	21,0±0,14	20,1±0,65	19,6±0,36
III	5	22,6±0,36	29,1±0,15	19,1±0,45	16,1±0,32
	50	21,2±0,42	28,3±0,12	26,7±0,64	25,4±0,39
	100	20,4±0,13	27,1±0,21	24,5±0,17	24,0±0,17
	150	19,8±0,27	25,2±0,41	24,1±0,65	23,0±0,44
	200	19,4±0,36	21,3±0,57	19,1±0,67	19,9±0,53
IV	5	25,1±0,14	30,5±0,18	28,1±0,17	28,0±0,16
	50	24,8±0,21	$30,0\pm0,76$	27,5±0,81	27,4±0,60
	100	24,1±0,31	29,5±0,51	26,3±0,42	26,6±0,41
	150	23,8±0,72	29,1±0,35	26,0±0,37	26,3±0,48
	200	19,6±0,67	28,3±0,41	28,2±0,72	26,5±0,60
V	5	26,5±0,81	31,5±0,19	28,3±0,18	82,7±0,40
	50	25,1±0,77	31,3±0,61	28,1±0,61	28,2±0,66
	100	24,0±0,61	31,1±0,53	27,4±0,37	27,5±0,50
	150	22,0±0,61	30,6±0,35	27,1±0,54	26,5±0,70
	200	20,0±0,18	27,9±0,27	26,5±0,65	24,8±0,36

1. Температура воды в водоёмах на различной глубине, °С (X±Sx)

наиболее благоприятна и для большинства форм зоопланктона. Максимальная интенсивность фотосинтеза наблюдается на глубине до 22 см [6].

Наиболее высокий градиент падения освещённости отмечен нами на глубине до 42 см.

При интенсивном выращивании двухлеток и трёхлеток карпа плотность посадки по количеству и биомассе рыб на единицу площади сильно увеличивается. Крупные карпы глубоко роют дно водоёма, взмучивают воду, поднимая частицы ила в толщу воды. В воде увеличивается количество мелких несъедобных фракций трофа, сильно увеличивается масса экскрементов. Все эти вещества, окисляясь, поглощают много кислорода. При таких обстоятельствах большое значение приобретает объём воды, который с увеличением глубины водоёма увеличивается.

При большей глубине водоёмов и, следовательно, объёме воды в расчёте на 1 га площади водоёма больше будет и валовое количество содержащихся в воде кислорода, биогенных веществ и, по-видимому, пищевых организмов.

Мы, исходя из того, что в водоёме оптимальный ионный обмен между почвой и водой возможен лишь при хорошем перемешивании водных масс, средние глубины водоёмов определяли с учётом скорости ветров данной зоны и площади водоёмов.

Видимо, оптимальные величины показателей морфометрических факторов (площадь, глубина и месторасположение водоёма) в определённой мере связаны между собой. Они в большей или меньшей мере обусловливаются комплексом местных метео-

рологических условий зоны: силой и направлением преобладающих ветров в месяцы вегетационного периода выращивания рыб, а также количеством получаемого тепла солнечной радиации, степень поглощения которой в воде сильно изменяется в зависимости от её волнения, испарения, развития фитопланктона и пр.

Расчёты, сделанные нами, основаны на средней скорости ветров в республике, развивающейся при этом длине волн. Рассчитанная таким образом для водоёмов близкой к квадрату формы глубина перемешивания воды колеблется от 1,2 м для водоёма площадью 1 га до 3,6 м при площади 50 га.

Нет никакого сомнения в том, что указанное воздействие ветров на глубину перемешивания воды является весьма важным фактором. Однако в данном случае немаловажное значение приобретают и такие факторы, как форма водоёма, положение продольной оси водоёма к направлению преобладающих ветров в данной зоне, количество и характер осадков, месторасположение водоёма, высота дамб над горизонтом воды.

В Кабардино-Балкарской Республике глубоких водоёмов мало, за исключением голубых озёр (3) и водохранилищ (2), средняя глубина которых составляет от 300 до 30 м соответственно, где нет возможности вести какие-либо научно-исследовательские работы, а остальные рыбоводные водоёмы — от 0,8 до 1,6 м. Биопродуктивность водоёмов с глубиной 0,8 м и ниже лимитируется ограниченностью увеличения плотности посадки, поскольку при уменьшении объёма воды

Эколого- фенологическая рыбоводная зона	Категория водоёма	Количество водоёмов	Глубина, м	Биопродук- тивность, ц/га	Выход рыб, %	Штучная масса, г
I	нагульные	5	1	3,36	80,0	305
	выростные II порядка	3	0,8	2,05	72,4	21,1
II	нагульные	5	1	3,85	83,1	380
	выростные II порядка	3	0,8	2,15	74,2	22,7
III	нагульные	4	1,5	9,05	85,0	400
	нагульные	6	2,0	9,30	87,5	420
	выростные	5	1,2	2,35	78,8	25,1
IV	нагульные	4	1,5	12,90	86,9	450
	нагульные	6	2,6	13,80	88,5	480
	выростные	5	1,2	2,75	77,1	28,4
V	нагульные	4	2,5	17,84	87,5	500
	нагульные	6	3,0	20,15	89,5	560
	выростные	5	1,2	3,50	79,1	32,2

2. Влияние глубины водоёмов на их продуктивность

на одну рыбу усиливается опасность заморных явлений. Кроме того, водоёмы такой глубины очень быстро зарастают водной растительностью, вследствие чего перемешивание водной массы затрудняется.

Проведённые в 2000-2013 гг. исследования показали, что с увеличением средней глубины рыбоводных водоёмов биоэкологическая продуктивность увеличивается (табл. 2).

Такая закономерность, однако, не всегда наблюдается в выростных водоёмах II порядка, что, видимо, объясняется малочисленностью этих водоёмов, незначительной вариабельностью их глубины и влиянием ряда других факторов (плотность посадки, выход рыбы и обеспеченность трофической цепи), уровень которых несколько варьировал в отдельных водоёмах.

Тем не менее анализ наших исследований даёт некоторое основание полагать, что в условиях республики оптимальная глубина выростных водоёмов II порядка должна составлять 0,9-1,2 м во всех эколого-фенологических рыбоводных зонах, а нагульных водоёмов путём увеличения их средней глубины (в I-II эколого-фенологических рыбоводных зонах – в пределах 1,5-2,3 м, в III -2,0-2,5 м, в IV -2,5-3,0 м и в V - выше 3,0 m).

Статистическая обработка данных выявила зависимость биоэкологической продуктивности выростных II порядка и нагульных водоёмов от их глубины (табл. 2). При проведении парного корреляционного анализа была вычислена средняя за указанный период биопродуктивность водоёмов. При этом исключались водоёмы или отдельные годы, где и когда биопродуктивность сильно снижалась ввиду субъективных причин (большой отход рыб вследствие заболеваний, заморов и др.).

При расчёте критерия значимости нами было найдено соотношение коэффициента регрессии (a_i) и его ошибки (sa_i) , т.е.: $r = a_i$: sa_i . Ошибка коэффициента регрессии вычислена по формуле:

$$Sa_i = \frac{\sum (Y_I - Y)^2}{\sum X_I^2 - X \sum X_I},$$

где Y – рыбопродуктивность, (кг/га);

X — глубина водоёма (см);

r — коэффициент корреляции;

t - критерий значительности Стьюдента-

Рассчитанные нами значения t при вероятности 95% значительно больше табличных. Следовательно, коэффициенты регрессии существенны и при оценке водоёмов следует учитывать их глубину.

Выводы.

- 1. Выведенные нами формулы действительны только для конкретных условий республики, где максимальная средняя глубина лишь немногих нагульных водоёмов превышает 1,5-1,6 м, а минимальная — 0,4—0,5 м. В этих пределах с увеличением глубины водоёма биопродуктивность повышается.
- 2. При дальнейшем увеличении или уменьшении глубины с достижением определённого предела биопродуктивность начала бы снижаться, однако данных для количественной характеристики этой тенденции в республике пока не имеется.
- 3. На основе математической обработки фактических данных нами определена биоэкологическая продуктивность водоёмов, их оптимальная средняя глубина, теоретически рассчитанная нами.
- 4. Следовательно, при дальнейшем увеличении средней глубины выростных и нагульных водоёмов теоретически можно ожидать снижение их биоэкологической продуктивности.

- **Литература**1. Казанчев С.Ч., Казанчева Л.А. Характеристика зональных особенностей эколого-гидрохимического режима водоёмов КБР. Нальчик, 2003. С. 163.
- Бессонов Н.М., Превезенцев Ю.А. Рыбохозяйственная гидрохимия. М.: Агропромиздат, 1987. С. 140–145.
 Превезенцев Ю.А. Выращивание рыб в малых водоёмах. М.: Пищевая промышленность, 2000. С. 5–9.
 Лакин Г.Ф. Биометрия. М., 1973. С. 51–60.
- Вант Гофф. Суточный ритм питания молоди карпа // Изд. ТихНИИРХО, 2001. Вып. 29. С. 117—121. Арчакова А.А. Объёмно-видовая характеристика фитоплан-
- ктона Нижнего Днепра. М., 2003. С. 30-35.