Морфологические показатели крови и лейкограмма бычков в период доращивания

Д.Л. Арсанукаев, д.б.н., профессор, **Х.М. Зайналабдиева**, к.б.н, ФГБОУ ВПО Чеченский ГУ

О сложных физиологических процессах, происходящих в организме животных, свидетельствует морфологический и биохимический состав крови, так как кровь является той средой, посредством которой клетки и ткани организма обогащаются необходимыми веществами и освобождаются от продуктов обмена [1].

Картина крови симптоматически отражает процессы, протекающие в организме животных. Поэтому определение количественного и качественного содержания ряда составных частей крови имеет исключительно важное значение для оценки здоровья и степени воздействия фактора на организм. Выполняя одну из функций — транспортную, она точно отражает особенности обмена веществ всего организма в целом и является удобным объектом для прижизненного изучения [2, 3].

Морфологический и химический состав крови тесно сопряжены с видом, породой, полом, возрастом, условиями кормления и содержания животных и сезоном года. Следовательно, физиолого-биохимический фон крови имеет индикаторно-диагностическое значение в профилактировании животных [4].

Материал и методы исследования. Для изучения влияния микроэлементов различной формы на

организм животных и определения экономической эффективности применения в их рационе микроэлементов в виде неорганических солей и в конъюгированной форме комплексонатов, изготовленных на основе этилендиаминтетраацетата — ЭДТА и этилендиаминдиянтарной кислоты — ЭДДЯК, был проведён опыт в учебно-опытном хозяйстве «Сахарово» Тверской ГСХА.

Опыт был проведён на бычках чёрно-пёстрой породы. По принципу групп-аналогов были сформированы четыре группы по четыре бычка в каждой. Группы формировали с учётом возраста, физиологического состояния, породы, живого веса животных [5]. Опыт проводили по схеме, представленной в таблице 1.

Ветеринарно-санитарные и зоогигиенические условия содержания и технология кормления были идентичными, соответствовали возрастным особенностям бычков.

Кормление осуществлялось по детализированным нормам три раза в сутки, с корректировками, при которых учитывали возраст, живую массу и среднесуточные приросты молодняка [6].

Известно, что интенсивность метаболических процессов тесно сопряжена с обменом газов между клетками и окружающей средой, эритроцитарной и локализующимся в ней гемоглобином системы крови. Для индикации и изучения респираторной

1. Схема опыта

Группа	Кол-во животных, гол.	Характеристика кормления	
I контрольная	4	основной рацион (ОР)	
II опытная	4	ОР + неорганические соли микроэлементов кобальта, меди, цинка, железа, марганца	
III опытная	4	ОР + комплексонаты ЭДТА кобальта, меди, цинка, железа, марганца	
IV опытная	4	ОР + комплексонаты ЭДДЯК кобальта, меди, цинка, железа, марганца	

функции крови были изучены такие гематологические показатели, как количество эритроцитов и гемоглобина, цветной показатель, кислородная ёмкость, средний диаметр эритроцитов, среднее содержание гемоглобина в эритроците и средняя концентрация гемоглобина в эритроците.

Результаты исследований. В начале основного периода исследований количество эритроцитов в крови всех исследуемых животных было на 8–22% ниже нормативного уровня, что свидетельствует о наличии асимптомной геминовой гипоксии, приводящей к частичной инактивации аэробных процессов в клетках (табл. 2).

При оптимизации рациона гемопоэтическими микроэлементами эритроцитарный фон на 2-м этапе опыта повысился в крови молодняка I контрольной гр. на 4%, II опытной — на 16, III опытной — на 26, IV опытной гр. — на 32% по сравнению с 1-м этапом.

Пределы колебаний и среднее значение эритроцитов в возрастном периоде 6—12 мес. у бычков чёрно-пёстрой породы составляло 8,94—6,47 млн/мкл, то есть с возрастом концентрация эритроцитов в крови уменьшается.

Результаты нашего исследования свидетельствуют, что после предварительного периода содержание эритроцитов по сравнению с контролем (4,66 млн/мкл) стало ниже в крови животных опытных групп и составляло у бычков II опытной 4,39, III опытной 4,0, IV опытной 3,98 млн/мкл. На завершающем 3-м этапе исследования концентрационный фон эритроцитов в крови молодняка был в пределах нормы, лучшие показатели отмечены у животных III и IV опытных групп Отсюда следует, что эритропения, вызванная естественным дефицитом изучаемых микроэлементов, успешно преодолевается в этих группах, особенно в IV последней, где их ингредировали в рацион.

Гемоглобин локализуется внутри эритроцитов и выполняет функции транспорта кислорода и диоксида углерода, участвует в регуляции до 75–82%

ацил-алкалозного баланса крови. Его недостаток приводит к развитию гипоксемии тканей.

У молодняка всех видов животных концентрация гемоглобина выше по сравнению со взрослыми животными. По данным зарубежных авторов, биотический диапазон колебания содержания гемоглобина в крови крупного рогатого скота составляет 8.0-15.0 г%, а по критериям российских учёных -9.0-12.0 г%.

На 1-м этапе исследования (после предварительного периода) содержание гемоглобина в крови животных всех групп составляло от 7,0 до 7,4 г%. По-видимому, включение микроэлементов в рацион молодняка опытных групп сенсибилизировало гемопоэтические органы животных до наступления их адаптации.

В крови животных исследуемых групп в течение экспериментального периода по содержанию гемоглобина и цветному индексу получены идентичные прогрессирующие показатели. Наилучшие из них по оксигенации крови наблюдались у молодняка III и IV опытных групп, потреблявшего с кормом кроветворные микроэлементы. При этом по содержанию гемоглобина в крови преимущество бычков II гр. над молодняком I контрольной составляло 3,35%, III — 5,53, IV — 10,14%.

Цветной показатель даёт представление о содержании гемоглобина в эритроците, в норме он равен единице и колеблется у животных от 0,9 до 1,1. Изменение этой величины в сторону увеличения или уменьшения отражает нарушение соотношения между эритроцитами и гемоглобином, что свидетельствует о развитии гипер- или гипохромной анемии. Статистический материал нашего исследования по цветному индексу свидетельствует, что насыщение эритроцитов гемоглобином в крови животных всех групп находилось в нормативном диапазоне от 0,89 до 1,03. Однако темпы образования эритроцитов и гемоглобина в гемопоэтических органах были недостаточными из-за неадекватной паритетности нутриентов, в том числе и микроэле-

2	Гематологические	показатели	бычков в	периол	лорашивания	$(X + S_X)$
4.	TOMATOMOTH TOOKITO	HORasaresin	ODI IKOD D	период	доращивания	(X - DA)

Показатель	Этап	Группа						
Показатель	Fraii	I контрольная	II опытная	III опытная	IV опытная			
Эритроциты, млн/мм ³ Гемоглобин, г% Цветной индекс О ₂ ёмкость крови, л Гематокрит, %	1-й	4,66±0,39 7,40±0,59 0,89±0,06 0,099±0,006 38,5±2,72	4,39±0,35 7,30±0,64 0,94±0,07 0,098±0,0056 38,1±2,51	4,0±0,29 7,0±0,45 0,97±0,08 0,094±0,006 37,9±2,83	3,98±0,36 7,10±0,58 1,1±0,07 0,095±0,007 37,0±2,64			
Эритроциты, млн/мм ³ Гемоглобин, г% Цветной индекс О ₂ ёмкость крови, л Гематокрит, %	2-й	4,81±0,42 8,10±0,67 0,94±0,08 0,118±0,075 39,8±2,90	4,92±0,32 8,50±0,74 0,96±0,06 0,114±0,001 40,0±3,10	5,10±0,35 8,90±0,64 0,99±0,07 0,112±0,085 41,5±262	$4,70\pm0,28$ $8,50\pm0,68$ $1,00\pm0,05$ $0,114\pm0,079$ $40,6\pm2,10$			
Эритроциты, млн/мм ³ Гемоглобин, г% Цветной индекс О ₂ ёмкость крови, л Гематокрит, %	3-й	4,80±0,38 8,90±0,54 1,03±0,06 0,120±0,09 39,9±1,7	5,10±0,41 9,20±0,76 1,00±0,08 0,123±0,021 40,8±2,28	5,30±0,37 9,40±0,81 0,98±0,07 0,126±0,01 41,8±2,53	5,50±0,29 9,80±0,63 0,99±0,06 0,132±0,072 43,0±2,11			

Этапы	Группа	Количество лейкоцитов	Лейкоцитарная формула, %							
			Б	Э		нейт	Л	Мон		
					M	Ю	Н	С	J1	IVIOH
1-й	I контрольная	9,2±0,66	0,87±0,06	7,13±0,40	_	0,29±0,02	1,71±0,3	30±2,8	52±4,6	3±0,26
	II опытная	12,0±0,95	1,76±0,15	6,24±0,47	_	1,32±0,06	3,68±0,29	35±2,4	$48\pm4,1$	4±0,30
	III опытная	9,3±0,76	$0,92\pm0,07$	7,08±0,58	_	1,20±0,08	4,80±0,43	31±1,6	50±3,9	5±0,34
	IV опытная	9,4±0,84	$0,85\pm0,07$	5,15±0,36	_	$0,44\pm0,02$	2,56±0,19	34±2,1	$53\pm4,7$	4±0,27
	I контрольная	11,8±0,92	1,23±0,09	4,77±0,30	_	0,87±0,05	2,13±0,17	30±2,1	59±5,0	2±0,15
2-й	II опытная	10,9±0,89	1,05±0,08	5,95±0,41	_	$0,39\pm0,02$	2,61±0,18	35±2,7	52±3,7	3±0.21
	III опытная	10,4±0,71	0,97±0,06	8,03±0,57	_	1,16±0,07	3,84±0,28	33±3,0	49±4,1	3±0,24
	IV опытная	12,0±0,85	1,14±0,05	6,86±0.50	_	0,95±0,06	2,05±0,14	31±2,4	55±3,4	3±0,19
3-й	I контрольная	11,1±0,70	1,06±0,04	5,94±0,29	_	0,26±0,01	1,74±0,12	34±1,9	52±3,2	5±0,32
	II опытная	9,5±0,54	$0,85\pm0,07$	7,15±0,61	_	1,17±0,08	3,83±0,31	30±2,7	55±4,9	2±0,14
	III опытная	8,1±0,61	$0,82\pm0,06$	6,18±0,38	_	0,84±0,05	2,16±0,16	28±1,8	60±4,5	2±0,16
	IV опытная	8,4±0,48	$0,80\pm0,05$	5,20±0,33	_	1,03±0,07	3,97±0,25	32±1,6	53±3,4	4±0,27

3. Лейкограмма бычков в период доращивания в динамике, тыс/мкл (X±Sx)

ментов в рационе в традиционных условиях ведения животноводства. При оптимизации рациона гемопоэтическими элементами количество эритроцитов и гемоглобина в крови животных в нашем опыте достигло наилучших показателей с приравненным цветным показателем.

Кислородная ёмкость крови показывает возможность максимального насыщения гемоглобина кислородом, необходимого для аэробного тканевого дыхания, обеспечивающего при этом образование мобильных форм макроэргов и термогенез в тканях и в целостном организме [7].

Максимальная оксигенация крови крупного рогатого скота находится в пределах 0.121-0.161 л O_2 на литр крови. На 1-м этапе исследований оксигенация крови составляла у животных I гр. 0.099, II -0.098, III -0.094 и IV -0.095 л O_2 на литр крови, что свидетельствует о недостаточном обеспечении организма кислородом. На 3-м этапе исследования эти показатели были в пределах нормы у бычков всех исследуемых групп, наилучшие результаты отмечены в крови молодняка IV опытной гр.

Показатели гематокрита в процентном выражении указывают на удельную массу эритроцитов в общем объёме крови. Полученный эмпирический материал по гематокриту демонстрирует возможность увеличения эритроцитарной массы, особенно в крови животных ІІІ и IV опытных групп, и нормализации физико-химических свойств крови.

Известно, что иммунная система эволюционно призвана поддерживать генетический гомеостаз в организме, находящийся под воздействием внешних и внутренних факторов. Однако фон белой крови при некоторых физиологических состояниях и воздействиях с внешней средой (кормление, содержание, климат, циркадные и цирканные биоритмы, также вид, пол, порода, конституция и продуктивность) может адаптивно дивергироваться, что необходимо учесть при считке лейкограммы в конкретных хозяйственных условиях.

Полученные данные по лейкограмме бычков в период доращивания представлены в таблице 3.

Процентное соотношение разных форм лейкоцитов гранулоцитарного и агранупоцитарного ряда находилось в пределах толерантной амплитуды и поддерживало иммунную симметрию у животных всех исследуемых групп.

Вывод. В целом при доращивании бычков применение микроэлементов в рационах кормления оказывало положительное влияние на имунную систему, активность анаболических процессов в организме и живую массу животных. Расчёт экономической эффективности свидетельствует о высокой эффективности использования разных форм микроэлементов и целесообразности их применения в виде комплексонатов на основе этилендиаминтетраацетата и этилендиаминдиянтарной кислоты. Установлено, что в период доращивания бычков уровень рентабельности в контрольной гр. равнялся 11,1%, во ІІ опытной (добавление в рацион неорганических солей микроэлементов) -17%, в III опытной (добавление комплексоната на основе этилендиаминтетраацетата) — 21% и в IV опытной гр. (добавление комплексоната на основе этилендиаминдиянтарной кислоты) -27%.

Литература

- 1. Томмэ М.Ф. Обмен веществ и энергии у сельскохозяйственных животных. М.: Сельхозгиз, 1949. 320 с.
- Афонский С.И. Биохимия животных. М.: Высшая школа., 1970. 612 с.
- Самохин В.Т., Ермаков В.В., Ковальский Ю.В. и др. Комплексный гипомикроэлементоз и здоровье // Микроэлементы в медицине: матер. II съезда РОСМЭМ. Оренбург, 2004 С. 29—32
- Рыжков В.А. Биохимический статус крови у тёлок в онтогенезе при разных способах содержания кормления и связи с сезоном года // Бюллетень научных трудов ВИЖа. 1992. Вып. 108. С. 25–27.
- Овсянников А.И. Основы опытного дела в животноводстве. М.: Колос, 1976. 304 с.
- Калашников А.П., Клейменов Н.И., Фисинин В.И. и др Нормы и рационы кормления сельскохозяйственных животных: справочное пособие. М., 2003. 456 с.
- Гущин П.Я., Гимадаев Р.Х., Хаерзаматов Р.Р. Минеральный обмен у крупного рогатого скота в условиях биохимического субрегиона Зауралья // Актуальные проблемы биологии в животноводстве: тез. докл. 3-й междунар. конф. Боровск, 2000. С. 69—70.