Гумусное состояние и биологическая активность чернозёмов обыкновенных (североприазовских) при длительном сельскохозяйственном использовании

О.И. Наими, к.б.н., ФГБНУ Донской зональный НИИСХ

Чернозёмные почвы обладают высоким потенциальным плодородием, основой которого является высокое содержание гумуса в этих почвах. Содержание гумуса и его распределение по профилю почв — характерный генетический и диагностический признак. Количественный и качественный состав гумуса тесно коррелирует со многими физическими свойствами и режимами почвы и в значительной степени определяет

её биологическую и биохимическую активность, являясь показателем экологической устойчивости агроэкосистем [1–3].

В структуре почвенного покрова Ростовской области чернозёмы занимают 57,9% территории. В настоящее время практически все они вовлечены в сельскохозяйственное производство [4]. Возрастающая антропогенная нагрузка на чернозёмы приводит к качественным изменениям их плодородия [2, 3, 5]. Потоки веществ, попадая в почву в результате антропогенной деятельно-

сти, включаются в естественные циклы, нарушая нормальное функционирование всей почвенной системы. Изменение свойств почв при сельскохозяйственном освоении начинается с верхнего, пахотного горизонта, постепенно переходя и на глубжележащие слои. Характер и направленность трансформации определяется как первоначальными свойствами почвы, так и уровнем интенсификации земледелия: структурой посевных площадей, уровнем применения минеральных и органических удобрений, удельным весом многолетних трав в севообороте и др.

С гумусным состоянием почв тесно связана их биологическая активность. Почвенные ферменты играют существенную роль в процессах трансформации органического вещества, а ферментативная активность почв может служить индикатором интенсивности процессов гумусообразования.

Цель исследования — изучить особенности гумусного состояния и ферментативную активность естественных и агрогенных чернозёмов обыкновенных карбонатных (североприазовских).

Объекты и методы исследования. Исследования проходили на одном из полей Донского зонального НИИСХа площадью около 100 га. В исследуемых почвах определяли: содержание общего углерода по Тюрину в модификации Никитина, качественный состав гумуса по схеме Тюрина в модификации Пономарёвой и Плотниковой [6], рН и содержание NPK общепринятыми методами, активность каталазы газометрическим методом, активность инвертазы колориметрическим методом Хазиева [7].

Статистическую обработку экспериментальных данных проводили на ПК с использованием программы Excel.

Результаты и исследования. Земледелие, являясь самым масштабным и длительным во времени фактором антропогенной эволюции почв, стало причиной многих деградационных процессов в чернозёмах, одним из которых является снижение запасов гумуса. Наличие этой проблемы отмечалась ещё В.В. Докучаевым, в настоящее время она попрежнему актуальна [5].

Чернозёмы, сформированные под естественными растительными ассоциациями, находятся в динамичном равновесии со всеми другими компонентами биогеоценоза. В условиях возросшей

антропогенной нагрузки на чернозёмы происходит нарушение складывающегося веками равновесия и развитие деградационных процессов.

Чернозёмы характеризуются равномерно-аккумулятивным типом внутрипрофильного распределения органического углерода. Как видно по полученным результатам (табл. 1), в пахотных почвах наблюдается снижение общего содержания гумуса по сравнению с целинными аналогами, прослеживается чёткая тенденция увеличения рН в пахотном горизонте. Повышенное по сравнению с целиной содержание нитратного азота и подвижных форм фосфора связано, вероятно, с внесением удобрений на пахотных почвах.

Гумус — динамичная система, в почве одновременно с процессом гумусообразования происходит минерализация гумуса с участием микроорганизмов. После распашки целины в пахотном слое резко уменьшается количество гумуса, но с увеличением периода использования пашни темпы потерь обычно снижаются. Основными причинами дегумификации чернозёмов являются: усиленная минерализация гумуса вследствие интенсивной обработки и применения минеральных удобрений, сокращение поступления органического вещества в пахотные почвы как в виде корневых и пожнивных остатков, так и органических удобрений, расход органического вещества на формирование урожая и др.

В исследованных чернозёмах снижение общего содержания гумуса не сопровождается уменьшением мощности гумусовых горизонтов. Для сохранения высокого плодородия чернозёмов и положительного баланса гумуса в них требуется регулярное ежегодное поступление органического вещества.

Изменение общего содержания гумуса сопровождается изменением структуры и качества гумусовых веществ. Анализ фракционно-группового состава гумуса предусматривает разделение гумуса на группы гуминовых кислот (ГК), фульвокислот (ФК) и негидролизуемого остатка с последующим разделением ГК и ФК на фракции по формам их связи с минеральной частью почвы [6].

Изучение фракционно-группового состава гумуса показало, что как для целинных, так и для пахотных чернозёмов характерен гуматный

1. Агрохимические свойства чернозёмов обыкновенных карбонатных	
(североприазовских)	

Глубина, см	рН	Гумус, %	$N-NO_3$, мг/кг	N-NH ₄ , мг/кг	P_2O_5 , мг/кг	K_2O , мг/кг				
Целина										
0-20	6,5	6,4	14	14 – 22		420				
20-40	7,2	4,5	18	_	14	310				
Пашня										
0-20	7,3	4,0	31	2,7	2,7 26,3					
20-40	7,6	3,7	23	2,5 15,1		346				
40–60	7,9	2,8	15	2,1	6,0	283				

2.36

2,37

37,5

31,5

186

20,3

(*************************************												
Глубина,	Глубина, Собщ., см %	Гуминовые кислоты			Фульвокислоты					Сгк	шо	
СМ		1	2	3	Σ	1a	1	2	3	Σ	Сфк	НО
	Целина [2]											
0-20	3,8	0,9	22,9	14,7	38,5	1,0	1,1	12,1	6,5	20,7	1,9	40,8
20-40	2,6	1,2	24,1	9,4	34,7	2,1	0,6	13,3	5,9	21,9	1,6	43,4
40–60		2,7	27,1	7,2	30,0	3,1	3,4	16,2	7,4	30,1	1,2	35,4
Пашня												
0-20	2,26	2,3	30,5	13,6	46,4	1,9	5,7	6,7	4,1	18,4	2,52	35,2

2. Групповой и фракционный состав гумуса чернозёмов обыкновенных карбонатных (североприазовских) (% от собщ.)

3. Биологическая активность пахотных чернозёмов обыкновенных карбонатных (североприазовских)

2,2

2,9

3,6

4.0

8,2

8,1

4.6

43.9

48.2

Г	Ка	аталаза, мл ${ m O_2}/{ m mi}$	ИН	Инвертаза, мг глюкозы / 1 г / 24 ч			
Глубина, см	m	S	V	m	S	v	
0–20	11,7	2,1	38,8%	18,84	1,02	5,5%	
20–40	11,2	1,9	32,3%	15,81	1,51	9,5%	
40–60	9,4	1,8	32,5%	9,54	3,02	31,7%	

Примечание: m - среднее значение; s - среднее квадратическое отклонение; v - вариабельность признака

тип гумуса, отношение Сгк: Сфк в верхних слоях пахотной почвы составляет 2,44—2,55, немного уменьшаясь в слое 40—60 см: 2,16—2,48 (в таблице 2 приведены средние значения). По сравнению с целинными аналогами в пахотных почвах на фоне потери запасов углерода наблюдается повышение содержания гуминовых и уменьшение содержания фульвокислот, как следствие — расширение соотношения Сгк: Сфк.

29.9

32.4

1,8

2.4

20 - 40

40-60

2.11

1,56

12.2

13,4

Степень гумификации органического вещества исследованных почв очень высокая, что характерно для всех чернозёмов. Следует отметить высокое содержание негидролизуемого остатка. Возможно, это связано с климатическими условиями, при которых низкая влажность воздуха и высокие летние температуры обусловливают глубокую дегидратацию твёрдой фазы почвы и соответственно повышение прочности связи гуминовых веществ с минеральными компонентами. Помимо высокого содержания негидролизуемого остатка это объясняет и пониженное количество фульвокислот. Для всех фракций фульвокислот характерно увеличение их содержания с глубиной, что говорит об их высокой миграционной способности. При длительном сельскохозяйственном использовании почв отмечается снижение величины негидролизуемого остатка: 35,4-43,4% в целинных почвах, 31,5-37,5% — на пашне.

Гуминовые кислоты являются наиболее устойчивой фракцией гумуса. В их составе преобладает фракция, связанная с кальцием, что, естественно, объясняется насыщенностью почв этим элементом в связи с наличием карбонатов. Количество органических веществ, переходящих в кислую и непосредственно щелочную вытяжки (без предварительного декальцирования) невелико, хотя и

имеет тенденцию к увеличению в пахотных почвах по сравнению с целиной. Это свидетельствует об увеличении миграционной способности гумусовых веществ при распашке.

Таким образом, при распашке чернозёмов происходит снижение содержания гумуса и его частичная трансформация из прочносвязанного состояния в более активные формы.

Почвенные ферменты катализируют процессы синтеза и минерализации органического вещества. Нами было проведено исследование уровня ферментативной активности каталазы и инвертазы как наиболее чувствительных и в то же время наименее варьирующих показателей биологической активности почв [7]. Каталаза разрушает перекись водорода, образующуюся в процессе дыхания растений и в результате биохимических реакций окисления органических веществ, её активность косвенно свидетельствует об интенсивности окислительной деструкции органического вещества почвы. Инвертаза осуществляет гидролитическое расщепление сахарозы и её производных, содержащихся в органическом веществе почв.

Как видно по таблице 3, интенсивность действия ферментов вниз по профилю закономерно снижается. Активность инвертазы в слое 0-20 см по шкале сравнительной оценки биологической активности почв [8] характеризуется как высокая, пределы колебания находятся в интервале от 17,7 до 20,3 мг глюкозы / 1 г почвы за 24 часа. В слое 40-60 см активность инвертазы по этой шкале варьирует от слабой до средней (4,7-12,2 мг глюкозы / 1 г / 24 часа).

Активность каталазы в пахотном горизонте изменяется от средней до высокой, показатели

каталазной активности в слое 0-20 см варьируют от 9,0 до 16,0 мл O_2 за 1 минуту.

Проведённый корреляционный анализ выявил довольно сильную положительную связь между содержанием гумуса и активностью инвертазы (r=0.88). Между содержанием гумуса и активностью каталазы связь гораздо слабее (r=0.54).

Выводы. Антропогенное воздействие приводит к существенным изменениям в гумусном режиме почвы. Так, при длительном сельскохозяйственном использовании почв происходит снижение содержания гумуса, что, в свою очередь, сказывается на его качественном составе.

Фракционно-групповой состав гумуса исследованных чернозёмов обыкновенных (североприазовских) характеризуется высоким содержанием гумусовых веществ, связанных с кальцием, низким процентом органических веществ, переходящих в кислую вытяжку, и высокими значениями углерода негидролизуемого остатка.

При сельскохозяйственном использовании чернозёмов происходит частичная трансформация

гумуса из прочносвязанного состояния в более активные формы.

Пахотный горизонт характеризуется высокой активностью инвертазы и каталазы, вниз по профилю активность ферментов снижается до средней и слабой. Сильная положительная связь выявлена между содержанием гумуса и активностью инвертазы (r=0.88).

Литература

- 1. Александрова Л.Н. Органическое вещество почвы и процессы его трансформации. Л., 1980. 288 с.
- 2. Безуглова О.С. Гумусное состояние почв юга России. Ростовна-Дону, 2001. 228 с.
- Орлов Д.С. Гумусовые кислоты почв и общая теория гумификации. М.: Изд-во Московского университета, 1990.
 326 с
- Зональные системы земледелия Ростовской области на 2013—2020 гг. Ростов-на-Дону, 2013. Ч. 1. 240 с.
- Орлов Д.С. Органическое вещество почв России // Почвоведение. 1998. № 9. С. 1049–1057.
- Орлов Д.С., Гришина Л.А. Практикум по химии гумуса. М.: Изд-во Моск. ун-та, 1981. 272 с.
- 7. Галстян А.Ш. Ферментативная активность почв Армении. Ереван, 1974. Вып. 8. 275 с.
- Звягинцев Д.Г. Биологическая активность почв и шкалы для оценки некоторых её показателей // Почвоведение. 1978. № 6. С. 48–54.