Урожайность и параметры экологической пластичности и устойчивости сортов ярового ячменя

В.А. Сапега, д.с.-х.н., профессор, ФГБОУ ВПО Тюменский ГАСУ

Сорт является одним из важнейших элементов инновационного процесса в растениеводстве. Эффективное его ведение в регионах с жёстким характером агрометеорологических условий, их непостоянством во времени и пространстве возможно лишь на базе адаптированных к местным условиям сортов [1, 2]. В связи с этим главным направлением селекции следует считать создание сортов, сочетающих высокий потенциал продуктивности и качества урожая с устойчивостью к действию абиотических и биотических стрессов [3].

Создание и внедрение в производство в последнее время большого числа высокоценных сортов не снимает ряда важных проблем. В частности, односторонний отбор на высокий потенциал продуктивности сопровождается повышением вариабельности урожайности сортов из-за их недостаточной устойчивости к экстремальным погодным условиям, что в конечном счёте приводит к снижению реализации потенциала урожайности [4].

Цель исследования — оценка сортов ярового ячменя по урожайности и параметрам адаптивности по результатам их испытания в различных природно-климатических зонах Тюменской области.

Материалы и методы исследования. Материалом исследования служили результаты сортоиспытания ярового ячменя за 2011—2013 гг. в трёх природно-климатических зонах Тюменской области: подтайге (II зона, Аромашевский ГСУ), северной лесостепи (III зона, Омутинский ГСУ) и южной лесостепи (IV зона, Бердюжский ГСУ). Предшественником в годы испытания была яровая пшеница. Изучали шесть сортов ярового ячменя, из них три допущенные к использованию (Ача, Челябинский 99, Ворсинский 2) и три — перспективные (Абалак, Жана, Зенит).

Агрометеорологические условия лет исследования носили контрастный характер. Независимо от природно-климатической зоны они были благоприятными в 2011 г. Показатели уровня увлажнения и температурного режима соответствовали среднемноголетним значениям в 2012 и 2013 гг. в зоне подтайги и северной лесостепи, а также в 2013 г. в южной лесостепи. Наиболее жёсткий комплекс агрометеорологических условий сложился в 2012 г. в южной лесостепи (Бердюжский ГСУ), что привело к резкому снижению урожайности сортов по сравнению с другими годами исследования.

Изменчивость (коэффициент вариации, сv, %) урожайности сортов ярового ячменя в пределах природно-климатической зоны определяли по Б. А. Доспехову [5]. На основе данных урожайности в 9 средах (3 года \times 3 ГСУ) определяли реализацию потенциала урожайности, а также её устойчивость (K_y) соответственно по методике Э. Д. Неттевича [4] и Р. Н. Ушакова [6]. Экологическую пластичность (коэффициент регрессии, b_i) и генотипический эффект ($E_{i..}$) сортов определяли соответственно по S. A. Eberhart, W. A. Russell [8] и методическим указаниям по экологическому сортоиспытанию зерновых культур [7].

Результаты исследования. В среднем за 2011-2013 гг. наиболее высокая урожайность сортов ярового ячменя в целом по опыту отмечена в условиях северной лесостепи — 41,5 т/га. В подтайге и южной лесостепи она характеризовалась

равной величиной, соответственно 3,61 и 3,64 т/га (табл. 1).

Независимо от природно-климатической зоны сорта ярового ячменя имеют высокий потенциал урожайности, особенно в северной лесостепной зоне.

Анализ средней урожайности сортов выявил чёткую их дифференциацию по уровню урожайности в каждом отдельном опыте. В то же время ранги большинства сортов не совпадают при сравнении их урожайности в различных природно-климатических зонах, что даёт основание предположить наличие генотип-средового взаимодействия, вызванного различной нормой реакции генотипов на условия среды конкретной серии опыта.

Лучшими сортами ярового ячменя по урожайности в среднем за годы исследования в зоне подтайги стали Ача (3,86 т/га), северной лесостепи — Жана (4,35 т/га) и южной лесостепи — Ворсинский 2 (3,83 т/га).

Дальнейшее повышение в процессе селекционной работы потенциала продуктивности сортов, их интенсивности приводит одновременно к снижению стрессоустойчивости в отношении действия в первую очередь абиотических факторов среды. Как видно из представленных данных, независимо от природно-климатической зоны все сорта ярового ячменя характеризовались сильной изменчивостью урожайности, и особенно в северной лесостепной зоне, где коэффициенты вариации находились в пределах от 54,9 (Ворсинский 2) до 74,5% (Жана) (табл. 1). Лучшим сортом по данному параметру является Ворсинский 2, коэффициент вариации урожайности у которого самый низкий во всех природно-климатических зонах.

Анализ максимальной урожайности сортов ярового ячменя за период с 2011 по 2013 г. по трём ГСУ (9 сред) выявил повышение её потенциала в динамике лет допуска их к использованию, а также у перспективных сортов. По величине максимальной урожайности выделились сорта Абалак (7,35 т/га) и Жана (8,09 т/га) (табл. 2).

1. Урожайность сортов ярового ячменя и её изменчивость в различных природно-климатических зонах, 2011 - 2013 гг.

	Год допуска к использова- нию	Природно-климатическая зона								
Сорт		подтайга (II зона, Аромашевский ГСУ)			северная лесостепь (III зона, Омутинский ГСУ)			южная лесостепь (IV зона, Бердюжский ГСУ)		
		урожайность			урожайность			урожайность		
		т/га	ранг	cv, %	т/га	ранг	cv, %	т/га	ранг	cv, %
Ача	2001	3,86	1	59,1	3,81	5	66,1	3,77	2	54,9
Челябинский 99	2004	3,39	6	54,9	4,07	4	62,2	3,28	6	60,4
Ворсинский 2	2011	3,68	2	53,8	4,26	2	54,9	3,83	1	52,2
Абалак	-	3,64	3	59,3	4,26	2	63,4	3,68	4	53,3
Жана	-	3,56	4	71,3	4,35	1	74,5	3,72	3	59,1
Зенит	-	3,54	5	59,6	4,15	3	64,1	3,58	5	58,6
Средняя урожайность в опыте, т/га	-	3,61	-	-	4,15	-	-	3,64	-	-

Cont	Год допуска	Урожайность, т/га			Реализация потенциала	К.	h	E,
Сорт	к использованию	max	min	$\overline{\mathbf{x}}$	урожайности, %	ι N _y	b _i	E _i
Ача	2001	6,72	1,96	3,81	56,7	0,41	0,98	0,01
Челябинский 99	2004	6,99	1,49	3,58	51,2	0,27	0,93	-0,22
Ворсинский 2	2011	6,93	1,97	3,92	56,6	0,40	0,92	0,12
Абалак	-	7,35	1,84	3,86	52,5	0,33	1,00	0,06
Жана	-	8,09	1,86	3,88	48,0	0,30	1,17	0,08
Зенит		7,21	1,82	3,75	52,0	0,34	1,00	-0,05

2. Урожайность, реализация её потенциала и параметры адаптивности сортов ярового ячменя, 2011-2013 гг. (3 года \times 3 ГСУ = 9 сред)

Минимальный уровень урожайности у большинства сортов практически не изменился, а у некоторых сортов (Челябинский 99, Зенит) снизился, что подтверждает высказывание А.А. Жученко [3] о снижении адаптивности создаваемых в последнее время сортов наряду с повышением потенциала их продуктивности.

Наибольшую среднюю урожайность за годы исследования показали допущенный к использованию сорт Ворсинский 2 (3,92 т/га) и перспективный Жана (3,88 т/га). По сравнению с сортом Ача (допущен к использованию в 2001 г.) нами выявлено повышение средней урожайности у трёх изученных сортов (Ворсинский 2, Абалак, Жана), что в целом указывает на эффективность селекционной работы с данной культурой в направлении повышения потенциала продуктивности создаваемых сортов.

Реализация потенциала возделываемых сортов зависит как от биологических их особенностей, так и факторов среды, регулируемых человеком (технология) и не зависящих от него (погода) [4]. Результаты проведённых исследований показали, что даже в конкурсном испытании, где технология близка к оптимальной, из-за неблагоприятных погодных условий периода вегетации отдельных лет, низкой адаптивности изученных сортов средняя величина реализации потенциала их урожайности составила 52,8%. Лучшими по данному параметру являются допущенные к использованию сорта Ача (56,7%) и Ворсинский 2 (56,6%) (табл. 2). Возможность дальнейшего роста реализации потенциала урожайности сортов в первую очередь связана с повышением их адаптивности, а также оптимизацией технологии в направлении максимального удовлетворения биологических требований сортов.

Создание гомеостатичных сортов, способных давать не только высокие, но и устойчивые урожаи в широком диапазоне условий, является одним из важнейших направлений селекции в регионах с жёстким и непостоянным характером погодных условий. Оценка сортов ярового ячменя по коэффициенту устойчивости урожайности выявила сравнительно низкие значения данного показателя у всех сортов, что указывает на недостаточный уровень их экологической устойчивости. Всё это приводит, как было показано выше, к сильной ва-

риабельности урожайности. Наибольшие значения коэффициента устойчивости отмечены нами у допущенных к использованию сортов Ача (K_y =0,41) и Ворсинский 2 (K_y =0,40), а самые низкие — у допущенного к использованию сорта Челябинский 99 (K_y =0,27) и перспективного сорта Жана (K_y =0,30) (табл. 2).

Коэффициент линейной регрессии (b_i), рассчитанный по методике S.A. Eberhart, W.A. Russell [7], служит мерилом степени реакции генотипа на изменение условий среды. Он даёт оценку пластичности в генетическом смысле, т.е. показателя стабильности реализации фенотипических значений признака в разных условиях среды.

Все изученные нами сорта ярового ячменя, за исключением сорта Жана, характеризуются как пластичные. Их коэффициент линейной регрессии (b_i) равный или близкий единице, т.е. изменение урожайности данных сортов полностью соответствует изменению условий выращивания. Сорт Жана относится к группе интенсивных, отзывчивых на изменение условий $(b_i > 1)$.

Вместе с тем он менее приспособленный к неблагоприятным условиям, его адаптация специфична (табл. 2).

Потенциал сортов в широком диапазоне экологических условий можно оценить по величине генотипического эффекта ($E_{i..}$). Как видно по результатам исследования, наибольшие значения данного параметра выявлены у сортов Ворсинский 2 ($E_{i..}$ =0,12) и Жана ($E_{i..}$ =0,08). Средняя урожайность этих сортов выше средней урожайности всех сортов за 2011 – 2013 гг. по трём ГСУ (9 сред) (табл. 2). Эти же сорта отмечаются и высокой общей адаптивной способностью, так как формируют наибольшую среднюю урожайность в широком диапазоне разнообразных средовых условий.

Выводы. Оценка допущенных к использованию и перспективных сортов ярового ячменя показала, что большинство из них имеют высокий потенциал продуктивности, но вместе с тем характеризуются сильной вариабельностью урожайности, а также сравнительно низкой реализацией её потенциала и, как следствие, недостаточной адаптивностью. Исходя из коэффициента регрессии подавляющее число сортов относится к группе пластичных, изменение урожайности которых происходит в строгом соответствии с изменениями условий среды. На

основе комплексной оценки сортов по величине средней урожайности, реализации её потенциала и параметрам экологической устойчивости и пластичности лучшими признаны Ача и Ворсинский 2.

- **Литература**1. Клыков А.Г., Моисеенко Л.М., Муругова Г.А. Оценка адаптивности сортообразцов ярового ячменя по продуктивности
- в Приморском крае //Достижения науки и техники АПК. 2014. № 2. С. 27 19. Сапега В.А., Турсумбекова Г.Ш. Оценка сортов яровой пшеницы по урожайности и параметрам адаптивности // Доклады Российской академии наук. 2013. № 4. С. 3-6.
- 3. Жученко А.А. Адаптивная система селекции растений (эколого-генетические основы). М.: РУДН, 2001. Т. 1. 780 с.

- 4. Неттевич Э.Д. Потенциал урожайности рекомендованных для возделывания в Центральном районе РФ сортов яровой пшеницы и ячменя и его реализация в условиях производства
- //Доклады Российской академии наук. 2001. № 3. С. 50-55. Доспехов Б. А. Методика полевого опыта. М.: Агропромиздат, 1985. 351 c.
- Ушаков Р.Н. Антропогенное регулирование устойчивости продукционного процесса яровых зерновых культур в условиях засухи на серых лесных почвах // Вестник Российской академии наук. 2003. № 5. С. 14—17.
- Методические указания по экологическому сортоиспытанию зерновых культур. М., 1980. 21 с. Eberhart S.A., Russell W.A. Stability parameters for comparing
- varieties // Crop. Sci., 1966. V. 6. № 1. P. 36-40.