Пищевая и биологическая ценность мяса бычков казахской белоголовой, калмыцкой пород и их помесей

К.К. Бозымов, д.с.-х.н., профессор, **Е.Г. Насамбаев**, д.с.-х.н., профессор, **Н.М. Губашев**, д.с.-х.н., **Р.М. Кулбаев**, докторант, Западно-Казахстанский АТУ; **Ф.Г. Каюмов**, д.с.-х.н., профессор, ФГБНУ Всероссийский НИИМС

Актуальность увеличения производства говядины в Республике Казахстан в кратчайшие сроки, а следовательно, интенсификация специализированного мясного скотоводства диктуется необходимостью расширения экспортного потенциала мяса страны с целью обеспечения её продовольственной безопасности [1-2].

В области мясного скотоводства за последние годы изучению продуктивных и некоторых биологических особенностей мясных пород уделялось огромное внимание и проведено немало научных работ. Однако до сих пор сравнительно мало данных по оценке качества мяса чистопородного и помесного молодняка различных генотипов [3, 4].

Известно, что к основным факторам, влияющим на формирование качества мясной продукции, относят кормление, породную принадлежность, пол, возраст, упитанность, условия содержания и индивидуальные особенности животных [5, 6].

Для увеличения производства высококачественной говядины, являющейся основным источником пищевого белка, необходимо задействовать все имеющиеся резервы. Поэтому нужен научный подход к выбору генотипов и технологий выращивания молодняка крупного рогатого скота [7—11].

Материалы и методы исследования. Для изучения качества мясной продукции молодняка разных генотипов были сформированы три группы новорождённых бычков по 15 гол. в каждой: I -калмыцкая порода, $II - \frac{1}{2}$ казахская белоголовая (отцовская порода) $\times \frac{1}{2}$ калмыцкая (материнская порода), III -казахская белоголовая порода. Бычков всех групп в подсосный период содержали по технологии мясного скотоводства под коровами. После отъёма в 8 мес. животные содержались в одном гурту. В 15 мес. был проведён контрольный убой — по 3 бычка из каждой группы.

Питательную ценность и качество мяса определяли по методике Всесоюзной академической сельскохозяйственной научно-исследовательской лаборатории (1990), используя данные химического анализа длиннейшей мышцы спины (Long. dorsi) и средней пробы мяса (400 г).

Результаты исследования. Биологическая и энергетическая ценность говядины и её пищевые достоинства обусловлены генотипом, уровнем и полноценностью кормления, физиологическим состоянием и технологией выращивания животных.

Одним из основных методов оценки качества мяса следует считать изучение его химического состава. В процессе индивидуального развития животных в химическом составе мяса происходят изменения, находящиеся в зависимости от пола, возраста, породы, условий кормления, содержания и т.д. Поэтому характер изменения основных питательных веществ с возрастом молодняка представляет определённый интерес.

На долю мышечной ткани приходится в пределах 75% массы туши, поэтому при изучении химического состава мякоти туши особое внимание уделяют анализу отдельных мускулов. В большинстве случаев для этого используют длиннейшую мышцу спины, которая является наиболее крупной. Её химический анализ позволяет более объективно судить о качестве мышечной ткани всей туши.

Анализ полученных данных свидетельствует о межгрупповых различиях по химическому составу и энергетической ценности длиннейшей мышцы (табл. 1).

При этом существенных межпородных различий по содержанию влаги и сухого вещества не наблюдалось. Следует отметить, что в длиннейшей мышце бычков породы казахская белоголовая отмечалась тенденция увеличения количества протеина при небольшом содержании жира.

Высокое содержание жира в мышцах было отмечено у калмыцких бычков (0,63%), при этом они превосходили аналогов других групп почти в 2 раза.

Энергетическая ценность мяса, рассчитанная на основании концентрации жира и белка в длиннейшей мышце спины, у молодняка всех исследуемых пород не имела существенных различий.

Качество мяса во многом зависит от биологической ценности, в первую очередь — от содержания в нём соответствующих фракций и заменимых аминокислот.

В мышцах постоянно присутствует соединительная ткань, в состав которой входят неполноценные белки с преобладанием в них заменимых аминокислот. Основу соединительнотканных белков

1. Химический состав, % и энергетическая ценность длиннейшей мышцы спины, МДж (X±Sx)

Показатель	Группа			
	I	II	III	
Влага	79,9±0,07	79,4±0,61	79,2±0,37	
Сухое вещество	20,1±0,07	20,6±0,61	20,8±037	
Белок	18,54±0,3,4	19,26±0,33	19,41±0,36	
Жир	$0,63\pm0,32$	$0,32\pm0,19$	0,33±0,07	
Зола	0,93±0,06	1,05±0,09	1,05±0,07	
Энергетическая	3,43±0,07	3,43±0,13	3,46±0,05	
ценность				

74,60±3,27

Показатель	Группа		
	I	II	III
Триптофан	1,70±0,00	1,75±0,07	1,77±0,04
Оксипролин	0,52±0,01	$0,50\pm0,02$	0,51±0,01
Изолейцин	7,50±0,42	8,05±1,06	6,73±0,53
Треонин	7,15±0,21	7,45±0,07	7,50±0,14
Серин	7,80±0,28	7,85±0,78	7,57±0,32
Глицин	8,45±0,35	8,30±0,42	8,53±0,15
Аланин	15,95±0,35	15,60±0,99	15,57±0,32
Валин	13,60±0,42	13,30±0,85	13,27±0,35
Метионин	3,05±0,07	3,20±0,14	3,2±0,07
Цистин	2,70±0,00	2,80±0,14	2,87±0,04
Лейцин	11,25±0,49	11,95±1,34	10,06±0,78
Глутамин	29,30±0,99	28,90±2,26	29,13±0,78
Пролин	5,95±0,49	5,60±0,99	5,53±0,43
Фениланин	10,70±0,28	10,45±0,78	10,47±0,28
Лизин	10,40±0,00	11,95±021	11,07±0,18
Аргинин	11,55±0,20	11,40±1,98	10,93±1,01
БКП	3,30±0,04	3,46±0,01	3,47±0,12
Сумма аминокислот	147,57±5,59	148,05±11,97	144,71±4,46

79,58±1,56

2. Биологическая ценность длиннейшей мышцы спины, r/kr ($X\pm Sx$)

составляет оксипролин. Белки мышц являются полноценными, так как содержат незаменимые аминокислоты, величину которых определяют по количеству триптофана. Соотношение триптофана и оксипролина является белковым качественным показателем, которому при оценке мышечной ткани придаётся большое значение.

% аминокислот от белка

С целью оценки биологической ценности в длиннейшей мышце спины бычков подопытных групп было определено содержание основных аминокислот (табл. 2).

Результаты исследований аминокислотного состава длиннейшей мышцы спины показали, что у бычков всех пород существенных отклонений между группами животных не обнаружено.

В конечном итоге суммарное количество аминокислот было немного выше у помесей и калмыцких бычков — 148,05 и 147,57 г/кг соответственно. Бычки породы казахская белоголовая уступали бычкам сопоставляемых групп соответственно на 3,34 и 2,86 г/кг.

Процентное содержание аминокислотного состава от белка отмечалось максимальное у бычков калмыцкой породы — 79,58%. Помеси уступали им на 3,61, а породы казахская белоголовая — на 6,98%.

Согласно требованиям к качеству мяса белковый показатель в говядине высокого качества составляет 5.8; среднего -4.8; у низкокачественной -2.5.

В наших исследованиях белковый качественный показатель во всех образцах мяса был чуть выше нижнего предела. Причём более низкий показатель наблюдался у калмыцких бычков — 3,30, в то время как у бычков породы казахская белоголовая и помесей он составлял 3,47 и 3,46.

Вывод. Исследование химического состава длиннейшей мышцы спины бычков калмыцкой породы, помесей и породы казахская белоголовая свидетельствует о её достаточно высокой пищевой и биологической ценности.

Результаты исследований аминокислотного состава длиннейшей мышцы спины показали, что суммарное количество аминокислот было несколько выше у помесей и калмыцких бычков (148,05 и 147,57 г/кг). Бычки породы казахская белоголовая уступали бычкам сопоставляемых групп на 3,34 и 2,86 г/кг соответственно.

 76.81 ± 4.89

Литература

- 1. Бозымов К.К. Современное состояние и перспективы развития мясного скотоводства Казахстана // Вестник мясного скотоводства. 2010. Т. 3. № 63. С. 37—43.
- 2. Бозымов К.К., Абжанов Р.К., Ахметалиева А.Б., Косилов В.И. Племенные и продуктивные качества анкатинского укрупнённого типа казахской белоголовой породы КХ «Айсулу» // Известия Оренбургского государственного аграрного университета. 2012. № 5 (37). С. 102–104.
- Косилов И.В., Никонова Е.А., Бозымов К.К., и др. Мясная продуктивность тёлок казахской белоголовой, симментальской пород и их помесей // Вестник мясного скотоводства. 2014. № 85. С. 20–26.
- Сёмин А.Н., Коптева Л.А., Мальцев Н.В. Стратегические направления повышения конкурентоспособности мяса крупного рогатого скота в Республике Казахстан // Аграрный вестник Урала. 2010. № 9–10. С. 4–10.
- Бозымов К.К., Абжанов Р.К., Ахметалиева А.Б., и др. Приоритетное развитие специализированного мясного скотоводства – путь к увеличению производства высококачественной говядины // Известия Оренбургского государственного аграрного университета. 2012. № 3 (35). С. 129–131.
- Косилов В.И., Крылов В.Н., Андриенко Д.А. Эффективность использования промышленного скрещивания в мясном скотоводстве // Известия Оренбургского государственного аграрного университета. 2013. № 1 (39). С. 87–90.
- Мироненко С.И., Косилов В.И. Мясные качества чёрнопёстрого скота и его помесей // Вестник Российской академии сельскохозяйственных наук. 2010. № 2. С. 68–69.
- Косилов В.И., Мироненко С.И. Формирование и реализация репродуктивной функции маток КРС красной степной породы и её помесей // Вестник Российской академии сельскохозяйственных наук. 2010. № 3. С. 64–66.
- Губашев Н.М., Бозымов К.К., Косилов В.И. Мясные качества чистопородных и помесных кастратов // Вестник сельскохозяйственной науки Казахстана. 2008. № 2. С. 29.
- Салихов А.А., Косилов В.И. Продуктивные качества молодняка чёрно-пёстрой породы // Известия Оренбургского государственного аграрного университета. 2008. № 1 (17). С. 64–65.
- 11. Косилов В.Й., Губашев Н.М., Насамбаев Е.Г. Повышение мясных качеств казахского белоголового скота путём скрещивания // Известия Оренбургского государственного аграрного университета. 2007. № 1 (13). С. 91–93.