Сезонная динамика гематологических показателей коров разных пород

Ф.Д. Салахов, аспирант, ФГБОУ ВО Башкирский ГАУ

Кровь, как одна из важнейших систем организма, играет важную роль в его жизнедеятельности. Находясь в тесном соприкосновении с тканями, кровь обладает всеми реактивными свойствами тканей, но её чувствительность к патологическим раздражениям выше и тоньше, а реактивность — выразительнее и рельефнее [1—3]. Поэтому всякого рода воздействия на ткани организма отражаются на составе и свойствах крови. В связи с этим исследование крови сельскохозяйственных животных получило широкое распространение [4—7].

Цель исследования — изучить морфологический состав и биохимические показатели крови коров в зависимости от генотипа и сезона года.

Материал и методы исследования. Исследование проводили на базе ООО «СХП «Нерал—Матрикс» Республики Башкортостан. Животные в хозяйстве содержатся беспривязно в боксах, корма раздаются с помощью «миксера» два раза в день. Кормление коров круглогодовое однотипное, доение двукратное.

Для проведения исследования были сформированы три группы животных по 5 гол. в каждой: I гр. — контрольная, в которую входили коровы чёрно-пёстрой породы отечественной селекции; во II гр. вошли коровы бурые швицкие немецкой селекции; в III гр. — голштины немецкой селекции. Кровь брали ежесезонно из яремной вены в объёме 10 мл. Анализ крови проводили в биохимической лаборатории Башкирского государственного аграрного университета по общепринятым методикам.

Результаты исследования. Анализ полученных данных свидетельствует, что в зависимости от сезона года, породной принадлежности и физиологического состояния животных количество лейкоцитов колебалось в пределах от 5,23 до $7,13\times10^{12}$ л, эритроцитов $-5,03-3,89\times10^9$ л, гемоглобина -74,77-121,91 г/л (табл. 1).

Результаты исследования показали, что колебания уровня лейкоцитов были не существенны и не выходили за границы физиологической нормы.

У всех исследуемых животных осенью установлен самый высокий уровень эритроцитов в крови. В крови коров I гр. отмечалось его стабильное повышение к осени, минимальное же значение было отмечено у всех животных в зимний период.

Аналогичная закономерность наблюдалась и по уровню гемоглобина в крови. Следует отметить, что к лету произошло повышение его концентрации в крови коров чёрно-пёстрой и голштинской пород. В то же время максимальное его значение установлено в крови животных ІІ опытной гр. осенью (121,91 г/л), что больше показателей аналогов І и ІІІ гр. на 9,58 и 13 г/л (7,8 и 10,6% соответственно).

Важной составной частью крови являются белки, выполняющие разнообразные функции в организме животного. Нами было отмечено плавное изменение содержания общего белка внутри каждой группы по сезонам года. Полученные результаты находились в пределах физиологической нормы.

Известно, что наиболее полную информацию даёт исследование белковых фракций, так как изменения в их соотношении могут происходить вне зависимости от содержания общего белка. Содержание альбуминов, как и общего белка, не превышало границы физиологической нормы (табл. 2).

Установлено, что изменение концентрации глобулинов в сыворотке крови носило по сезонам года волнообразный характер. При этом наименьшее содержание α -глобулинов в сыворотке крови было отмечено в осенний период у животных I опытной гр. — $9,12\pm2,2\%$, а максимальное у коров II опытной — $13,41\pm1,06\%$, что больше на 4,29% (P > 0,05).

Показатели β -глобулинов у коров бурой швицкой породы изменялись в течение года. При этом зимой они достигали 19,12%, летом 23,85% (P<0,05). Следует отметить что концентрация β -глобулинов во все сезоны года в сыворотке крови коров этого генотипа находилась на высоком уровне, и они превосходили показатели аналогов других групп.

Что касается γ -глобулинов, то следует отметить их существенные колебания в зависимости от сезона года. При этом максимальный их уровень отмечался осенью в сыворотке крови животных контрольной группы — 33,92 \pm 3,57%, минимальное же содержание было отмечено в летний период у коров I опытной гр. — 21,72 \pm 2,14%.

В организме животного важную роль играют ферменты пераминирования: аланинаминотрансфераза (АЛТ), аспартатаминотрансфераза (АСТ), основной функцией которых является перенос

1. Гематологические показатели коров $(X \pm Sx)$

Пока- затель	Сезон года	Группа			
		I конт-	II опыт-	III опыт-	
		рольная	ная	ная	
Лейко- циты, ×10 ⁹ л	Зима	6,95±1,43	5,34±0,73	5,49±0,79	
	Весна	6,29±0,58	6,77±0,67	$7,13\pm0,74$	
	Лето	6,30±0,25	5,23±0,28	$6,60\pm0,33$	
	Осень	6,43±0,45	5,4±0,73	$6,29\pm0,56$	
Эритро- циты, ×10 ¹² л	Зима	4,26±0,18	3,93±0,25	$3,89\pm0,35$	
	Весна	4,79±0,37	4,74±0,40	4,21±0,13	
	Лето	4,84±0,25	4,28±0,42	$4,64\pm0,13$	
	Осень	5,03±0,24	4,98±0,18	$4,82\pm0,42$	
Гемогло- бин, г/л	Зима	83,69±4,04	75,42±3,75	74,77±5,28	
	Весна	114,58±5,37	105,01±8,69	$105,99\pm2,24$	
	Лето	116,57±8,98	106,94±11,45	$110,39\pm3,73$	
	Осень	112,32±6,73	121,91±3,05	108,91±7,85	

29,45±3,31

32,15±2,66

	Показатель							
Сезон года	общий	альбумины, %	белковые фракции, %					
	белок, г/л		α-глобулины	β-глобулины	γ-глобулины			
I контрольная								
Зима	83,1±2,61	40,10±3,88	9,92±0,72	19,65±1,18	30,34±3,96			
Весна	78,46±3,41	41,32±3,09	9,7±1,22	17,64±1,78	31,16±3,14			
Лето	80,58±0,8	42,62±1,97	11,7±0,71	17,39±2,3	28,3±1,59			
Осень	82,38±0,67	37,22±3,7	9,98±1,29	18,88±2,54	33,92±3,57			
II опытная								
Зима	79,24±1,75	49,56±2,76	11,68±0,44	19,12±0,78	21,81±2,04			
Весна	74,52±1,64	47,47±2,59	$10,02\pm1,36$	19,51±0,91	23,01±1,55			
Лето	76,22±1,9	46,79±1,89	10,73±1,08	21,79±1,12	21,72±2,14			
Осень	77,18±1,15	40,22±1,32	9,12±2,2	23,85±2,03*	26,8±2,46			
III опытная								
Зима	79,28±1,57	45,3±1,14	12,87±1,86	19,88±1,75	21,95±0,82			
Весна	77,98±2,78	39.28±1.12	13±2.46	18.22±1.71	29,5±1,90			

2. Белковый состав сыворотки крови коров по сезонам года ($X \pm Sx$)

Примечание: * - P < 0.05

Лето

Осень

3. Сезонные изменения активности аминотрансфераз сыворотки крови коров, Ед/л

 $13,41\pm1,06$

 $10,02\pm1,06$

 $40,62\pm1,8$

37,62±3,63

Показатель	Сезон года	Группа					
		контрольная		I опытная		II опытная	
		X±Sx	Cv, %	X±Sx	Cv, %	X±Sx	Cv, %
АЛТ	Зима	16,83±3,14	37,28	14,82±1,33	17,98	14,86±1,24	16,56
	Весна	13,93±2,78	39,87	19,02±1,86	19,56	18,29±1,73	18,96
	Лето	13,91±0,79	11,36	15,30±1,70	22,19	13,19±0,38	5,76
	Осень	11,06±0,77	13,92	14,39±1,46	20,31	10,59±2,45	45,86
ACT	Зима	13, 33±0,96	14,36	14,84±0,90	12,18	15,60±0,70	8,95
	Весна	19±1,33	13,56	23,66±0,77	6,48	23,74±1,56	13,33
	Лето	14,53±0,88	12,03	16,72±1,56	18,66	15,49±2,26	29,20
	Осень	15,94±0,09	1,14	17,76±0,82	9,30	16,27±0,89	10,97

аминогруппы от аминокислот к кетокислотам. Нами было отмечено увеличение активности АЛТ в весенний период у животных в I и II опытных гр., они превосходили сверстниц контрольной гр. по величине изучаемого показателя на 4,36-5,09 Ед/л (P < 0,05) (табл. 3).

 $80,52\pm2,33$

79,12±1,29

Аналогичная картина у них наблюдалось и по активности АСТ, по показателям, по которым коровы опытных групп превосходили сверстников контрольной группы на 4,66-4,74 Ед/л, (P>0,05).

Уровень макроэлементов (кальция и фосфора) в сыворотке крови характеризовался относительной стабильностью по периодам исследования. Установлено, что изучаемые показатели не выходили за пределы физиологической нормы и достоверных межгрупповых различий не обнаружено.

Вывод. Сравнительный анализ морфологических и биохимических показателей крови коров разных генотипов существенных различий не выявил. Колебания же показателей были связаны с сезонными изменениями и физиологической адаптацией организма.

Литература

 $16,51\pm1,71$

 $20,62\pm1,7$

- 1. Гумеров У.Р., Исламова С.Г., Казнабаев Р.Ф. и др. Биохимические показатели крови коров разных генотипов // ЕС-России: 7-я Рамочная программа в области биотехнологии, сельского, лесного, рыбного хозяйства и пищи: матер. междунар.конф. с элементами науч. школы для молодёжи. Уфа: Башкирский ГАУ, 2010. С. 132—133.
- Гумеров У.Р., Исламова С.Г., Байзигитов Р.Р. и др. Морфологический состав крови коров разных генотипов // ЕС-России: 7-я Рамочная программа в области биотехнологии, сельского, лесного, рыбного хозяйства и пищи: матер. междунар.конф. с элементами науч. школы для молодёжи. Уфа: Башкирский ГАУ, 2010. С. 133—135.
- 3. Симонян Г.А., Хисамутдинов Ф.Ф. Ветеринарная гематология. М.: Колос, 1995. 256 с.
- Тагиров Х.Х., Макулова А.Б., Белоусов А.М. Гематологические показатели молодняка бестужевской породы и её помесей с салерсами // Известия Оренбургского государственного аграрного университета. 2011. № 1 (33). С. 114—116.
- Крылов В.Н., Косилов В.И. Показатели крови молодняка казахской белоголовой породы и её помесей со светлой аквитанской // Известия Оренбургского государственного аграрного университета. 2009. № 2 (22). С. 121–125.
- Косилов В.И., Мироненко С.И., Жукова О.А. Гематологические показатели тёлок различных генотипов на Южном Урале // Вестник мясного скотоводства. 2009. Т. 1. № 62. С. 150–158.
- 7. Иргашев Т.А., Косилов В.И. Гематологические показатели бычков разных генотипов в горных условиях Таджикистана // Известия Оренбургского государственного аграрного университета. 2014. № 1 (45). С. 89—91.