Экономические аспекты устойчивости зернового производства Республики Крым

3.А. Изотова, к.э.н., ФГАОУ ВО Крымский ФУ

Для любой системы устойчивость является одной из важнейших характеристик. Экономическая устойчивость лежит в основе обеспечения простого и расширенного воспроизводства, служит индикатором инвестиционной привлекательности соответствующих направлений производства. В агарном секторе проблема обеспечения устойчивости стоит особо остро ввиду влияния стохастических природно-климатических условий, специфики аграрного рынка и ряда других причин [1]. Кроме того, устойчивость агарного производства выходит за рамки экономических отношений и имеет важное социальное значение, поскольку является основой развития сельских территорий.

Поиск методов оценки и способов укрепления устойчивости сельскохозяйственного производства является одним из приоритетных направлений исследовательской работы учёных, которое с течением времени не только не теряет своей актуальности, но и формирует основания для уточнения и пересмотра устоявшихся подходов.

Изучению показателей устойчивости уровней динамического ряда, а также методов измерения устойчивости тенденции и построению комплексных критериев устойчивости посвящены работы таких авторов, как А.И. Манелля, И.П. Бойко, В.Н. Афанасьев, С.А. Суслов и И.В. Громова, А.Н. Ващенко, В.В. Чепурко и др. [2—7].

Несмотря на фундаментальные методические и методологические разработки, исследования авторов преимущественно сфокусированы на производственной устойчивости, недостаточно раскрыта её связь с экономическими показателями эффективности производства.

Цель данного исследования состоит в проведении оценки устойчивости экономической эффективности зернового производства в различных районах Республики Крым. Достижению поставленной цели служат обоснование и расчёт интегрального показателя для оценки устойчивости экономической эффективности зернового производства и разработка соответствующей шкалы.

Для достижения цели исследования используется комплекс эконометрических и статистических методов анализа динамических рядов.

В работе С.А. Суслова даётся краткая характеристика наиболее распространённых показателей и методик исследования устойчивости сельскохозяйственного производства, ориентированных на изучение устойчивости урожайности сельскохозяйственных культур [5]. Учитывая достоинства и ограничения рассмотренных показателей и их

комплексов, для решения обозначенных нами задач исследования считаем целесообразным остановиться на подходе В.В. Чепурко [7].

Для экономической оценки эффективности производства нами выбран показатель рентабельности, отражающий окупаемость всех текущих затрат на производство и реализацию продукции, а также выступающий инструментом инвестиционной политики. Относительный характер выбранного показателя экономической эффективности позволяет проводить сравнительносопоставимый анализ по различным культурам в разрезе ряда лет.

По 15-летним данным об уровне рентабельности зерновых в целом, а также ключевых зерновых культур региона пшеницы и ячменя для районов Республики Крым, симплекс-методом линейного программирования были построены уравнения тренда и рассчитаны интегральные показатели устойчивости (K_6), включающие такие характеристики исследуемой совокупности, как линейный коэффициент вариации (W_y), относительное максимальное отрицательное отклонение от тренда (W_{min}), относительное среднее отклонение от тренда (K_c), средняя отрицательная колеблемость (K_o), среднее максимальное отрицательное колебание (K_{mo}):

$$V_{y}(t) = \left| \overline{E} \right| / \overline{y} , \qquad (1)$$

где \overline{y} — средняя рентабельность динамического ряда;

 $|\overline{E}|$ — линейное среднее отклонение от тренда.

$$W_{v}(t) = S_{v}(t)/\overline{y} , \qquad (2)$$

где $S_{y}(t)$ — среднее квадратическое отклонение от тренда.

$$W_{\min} = \min\{E_t\}/\hat{y}_t , \qquad (3)$$

где \hat{y}_t — значение рентабельности, рассчитанное по уравнению тренда.

$$K_C = \frac{\left(\sum_{t \in T} X_t' - \sum_{t \in T} X_t''\right) / N}{\overline{y}}, \tag{4}$$

где $X_{t}^{'}$ — отрицательное отклонение уровня ряда от тренда;

 $X_{t}^{"}$ — положительное отклонение уровня ряда от тренда.

$$K_O = \frac{\sum_{t \in T} X_t^{"} / n}{\overline{v}}, \tag{5}$$

$$K_{MO} = \frac{(\sum (X_t^{"} - (\sum_{t \in T} X_t^{"} / n))) / m}{\overline{v}},$$
 (6)

где m — число отрицательных отклонений, больших среднего отрицательного отклонения $\sum_{t \in T} X_t^{"} / n$.

$$K_6 = \sqrt[6]{V_y \cdot W_y \cdot W_{\min} \cdot K_C \cdot K_O \cdot K_{MO}} \ . \tag{7}$$

Применение методики В.В. Чепурко [7] к исследованию колебаний рентабельности имеет ряд особенностей, обусловленных необходимостью работы с отрицательными величинами. Для однозначной интерпретации значений интегрального показателя устойчивости он определён по модулю.

Градация уровней устойчивости рентабельности требует обоснования соответствующей шкалы интегрального критерия. Данная задача решена с применением кластерного анализа (метод k-средних) к 45 наблюдениям (значения интегрального показателя устойчивости рентабельности в разрезе районов и культур). В результате классификации в качестве оптимальной группировки выбран вариант разбиения совокупности на 4 группы со следующими характеристиками (табл. 1).

1. Результаты классификационной группировки значений интегрального показателя устойчивости рентабельности зерна

Кластер	Центроиды	Населённость кластера, %
3	19	42
1	14	31
2	6	13
4	6	13

В основу определения границ интервалов оценочной шкалы (табл. 2) положены значения центроидов (средние значения по кластеру).

2. Шкала устойчивости по интегральному коэффициенту устойчивости рентабельности зерна

1		
Интервал оценочной шкалы	Уровень устойчивости рентабельности	
0-1,0	высокая	
1,1–1,9	умеренная	
2,0–4,5	низкая	
4,6–11,0	очень низкая	
более 11,0	критическая	

Проведённая оценка устойчивости рентабельности ключевых зерновых культур указывает на значительное варьирование интегрального показателя в разрезе районов и культур, а также на несоответствие уровней устойчивости производства и рентабельности зерновых по отдельным районам Республики Крым (табл. 3).

В целом 64% вариантов наблюдений можно отнести к условно устойчивым (высокий и умеренный уровни).

В большинстве случаев результаты сопоставления значений интегральных показателей устойчивости по урожайности и рентабельности свидетельствуют о соответствии их уровней (значения расположены в одинаковых или соседствующих градациях), что подтверждает тезис о взаимосвязи экономической эффективности зернового производства и урожайности. Однако имеет место и отсутствие согласованности их уровней в таких районах Крыма, как Бахчисарайский (пшеница, ячмень), Джанкойский (пшеница), Красногвардейский (ячмень). В перечисленных случаях производственная устойчивость оценивается на более высоком уровне, чем её экономический аспект: при умеренной производственной устойчивости уровень устойчивости рентабельности не превышает отметки «очень низкий».

Установленный факт указывает на недостаточность стабилизации производства зерна для обеспечения устойчивой экономической эффективности. Основной спектр ограничивающих факторов лежит в кредитно-финансовой, конъюнктурной и инфраструктурной сферах.

В идентифицированных районах контрастные различия в значениях интегральных показателей устойчивости обусловлены в первую очередь состоянием почвенного плодородия и условиями влагообеспеченности. Затраты на преодоление природных ограничений с целью обеспечения устойчивых урожаев в реалиях зернового рынка зачастую не окупаются, что приводит к скачкам рентабельности. В этих районах также зафиксированы наибольшие значения среднего максимального отрицательного колебания $(K_{\text{мо}})$.

В ряде районов имеет место и несогласованность другого характера — относительно устойчивая рентабельность граничит с низкой устойчивостью урожаев, что характерно для Белогорского (пшеница), Первомайского (пшеница), Раздольненского (пшеница), Советского (пшеница) и Сакского (ячмень) районов. Выявление причин указанной динамики требует дополнительного исследования.

Особого внимания заслуживает факт асинхронности колебаний (рост и спад) урожайности и рентабельности, которая имеет место в 46% случаях наблюдений «год — район — культура». Данное явление во многом обусловлено спецификой рынка зерна и требует совершенствования государственных мер его регулирования, поскольку в высокоурожайные годы падение цен не позволяет достигнуть ожидаемого уровня эффективности. Синхронные же положительные колебания для пшеницы по частоте уравновешивают отрицательные, для ячменя в пропорции 3:2 преобладают отрицательные согласованные отклонения.

В исследовании проблем обеспечения устойчивости экономической эффективности важное значение имеют не только показатели, характеризующие отклонение от выравненной по тренду величины, но и фактические уровни показателей, которые определяют направление развития в новом производственном цикле. Так, по оценкам Россий-

3. Интегральные коэффициенты устойчивости урожайности и рентабельности							
зерновых культур в районах Республики Крым							

Район	Зерновые	Пшеница		Ячмень	
	${ m K_6}$ по рента- бельности	К ₆ по рента- бельности	К ₆ по уро- жайности*	${ m K_6}$ по рента- бельности	К ₆ по уро- жайности*
Крым	1,601	1,693	0,821	10,376	0,840
Бахчисарайский	3,210	4,842	0,840	12,881	0,840
Белогорский	1,171	1,040	0,783	1,880	0,787
Джанкойский	9,091	7,097	0,810	1,509	0,840
Кировский	3,441	3,591	0,770	8,456	0,790
Красногвардейский	1,460	1,311	0,831	9,253	0,822
Красноперекопский	1,634	16,341	0,690	4,843	0,750
Ленинский	1,337	1,415	0,745	2,246	0,729
Нижнегорский	0,868	0,648	0,813	1,520	0,801
Первомайский	1,333	0,918	0,790	1,242	0,750
Раздольненский	0,676	0,814	0,781	2,252	0,753
Сакский	0,783	1,121	0,790	1,018	0,790
Симферопольский	0,897	0,972	0,840	1,566	0,860
Советский	1,034	1,076	0,733	2,163	0,744
Черноморский	1,653	2,872	0,747	1,870	0,765

Примечание: * – рассчитано автором на основании данных территориального органа Федеральной службы государственной статистики по Республике Крым [8]

ской академии сельскохозяйственных наук, минимальная рентабельность зерновых, достаточная для простого воспроизводства, на сегодняшний день должна быть не менее 25—27% [9]. Результаты исследования Зернового союза указывают на 40-процентный пороговый уровень простого воспроизводства и порядка 50-процентный расширенного [10].

Нестабильные и неоднородные природноклиматические условия Крымского полуострова наряду с неустойчивостью зернового рынка не позволяют стабилизировать экономическую эффективность производства зерна и тем более обеспечить её устойчивый рост. В разрезе ключевых зерновых культур и районов Республики Крым по разработанной и обоснованной шкале выявлены территории, отличающиеся высоким и критическим уровнем варьирования экономической эффективности их выращивания. Полученные результаты могут служить ориентиром для производственных решений. Корректировка сложившейся ситуации требует дополнительных исследований, направленных на изыскание ключевых факторов и инструментов управления ими. В частности, поиск внутрихозяйственных резервов и обоснование направлений государственной поддержки зернопроизводителей.

Литература

- 1. Васильева Н.К. Методы оценки устойчивости производства в аграрном секторе экономики // Экономический вестник РГУ. 2005. Т. III. № 4. С. 93 97. [Электронный ресурс]. URL: http://ecsocman.hse.ru/data/090/801/1219/93-97.pdf
- Манелля А.И. Измерение устойчивости производства продукции земледелия // Статистический анализ развития АПК. М.: Наука, 1992. С. 60–73.
- Бойко Й.П. Проблемы устойчивости сельскохозяйственного производства. Ленинград: Издательство ЛГУ, 1986. 168 с.
- Афанасьев В.Н. Статистическое обеспечение проблемы устойчивости сельскохозяйственного производства. М.: Финансы и статистика, 1996. 228 с.
- Суслов С.А., Громова И.В. Методика региональной оценки экономической устойчивости сельскохозяйственного производства // Вестник НГИЭИ. 2012. № 5. С. 100–114. [Электронный ресурс]. URL: http://cyberleninka.ru/article/n/metodika-regionalnoy-otsenki-ekonomicheskoy-ustoychivostiselskohozyaystvennogo-proizvodstva
- 6. Ващенко А.Н. Особенности экономической устойчивости аграрного производства // Вестник Волгоградского института бизнеса. 2012. № 4 (21). С. 66–68. [Электронный ресурс]. URL: http://vestnik.volbi.ru/upload/numbers/421/article-421-467.pdf
- 7. Чепурко В.В. Экономический риск аграрного производства: теория, методы оценки, управление. Симферополь: Таврия, 2000. 308 с.
- Чепурко В.В. Дифференциация устойчивости производства и качества зерна в районах АР Крым // Учёные записки КИПУ. Экономические науки. 2012, Вып. 37. С. 30–35.
 Литвинова Н. Вместо стратегии план по валу // Эксперт-
- Литвинова Н. Вместо стратегии план по валу // Экспертонлайн. 2013. [Электронный ресурс]. URL: http://expert.ru/ expert/2013/19/vmesto-strategii--plan-po-valu/
- 10. Литвинова Н. Как спрыгнуть с качелей // Экспертонлайн. 2010. -[Электронный ресурс]. URL: http://expert.ru/expert/2010/49/kak-spryignut-s-kachelej/