Изменение компонентов природной среды в природно-технической системе Оренбургского газохимического комплекса

А.Г. Клунов, магистрант, **Т.А. Гамм**, д.с.-х.н., профессор, ФГБОУ ВО Оренбургский ГУ

Для оценки воздействия предприятия по переработке природного газа на естественный ландшафт целесообразно применять такой критерий, как опасность нарушения природного баланса на данной территории, так как в ходе хозяйственной деятельности образуется природно-техническая система, которая обязательно приходит на смену природной системе [1].

Использование почвенного метода очистки сточных вод Оренбургского газохимического комплекса на протяжении 39 лет неизбежно привела к увеличению нагрузки на литосферу, гидросферу и флору на земледельческих полях орошения (ЗПО) [2], расположенных в 10 км от с. Черноречья, на склоне к р. Чёрной.

На основе проведённых ранее исследований на ЗПО рекомендовали выращивать многолетние и однолетние травы [3]. С начала эксплуатации ЗПО ОГХК основной возделываемой кормовой культурой была суданская трава, поэтому большинство исследований проводилось на её посевах. В последние 3 года в севооборот ввели сорго, которое имеет более высокую урожайность и содержит больше кормовых единиц, поэтому оно должно стать основной культурой для получения зелёной массы на данном массиве при сборе трёх урожаев в год. Так как растения выращивают при сбросе сточных вод, актуально определить водно-физические свойства почв, содержание тяжёлых металлов, серы и питательных веществ именно в сорго.

Цель исследования заключалась в оценке существующего состояния компонентов природной среды ПТС в районе ЗПО.

Материал и методы исследования. Воду из р. Чёрной отбирали выше и ниже ЗПО по течению, а также в среднем течении возле плотины в непосредственной близости к ЗПО. Почвенные монолиты из пахотного слоя почв ЗПО отбирали на трёх участках в верхней части склона к р. Чёрной и на контрольном участке. Сорго отбирали на ЗПО и в колхозе им. Ленина (контроль).

Отборы проб воды проводили в соответствии с ГОСТом 17.4.4.02-84 [4] и ГОСТом Р 51592-2000 [5]. Химический состав проб почвы, вод р. Чёрной и урожая сорго определяли в испытательной лаборатории государственного центра агрохимической службы «Оренбургский». Для изучения водно-физических свойств почвы использовали почвенные монолиты, отбираемые методом пробных площадок [6]. Водно-физические свойства почвы определяли в лаборатории кафедры

экологии и природопользования Оренбургского государственного университета. Количественное определение тяжёлых металлов в урожае сорго проведено по ГОСТу 30178-96 «Сырьё и продукты пищевые. Атомно-абсорбционный метод определения токсичных элементов» [7].

В лабораторных исследованиях применяли следующие методы: колориметрический (ФЭК), титрометрический (метод Мора), комплексонометрический, фотометрический (с реактивом Несслера), гравиметрический, газовой хроматографии, атомно-абсорбционной спектрофотометрии.

Результаты исследования. Влияние сточных вод на почву выражается в изменении её воднофизических свойств: увеличивается плотность сложения, снижается влагоёмкость и уменьшается водопроницаемость. Постоянное уплотнение почвы может привести к началу процесса оглеения. Увеличение плотности сложения почвы способствует снижению фильтрационной способности почвы. Изменение водно-физических свойств пахотного слоя почвы приводит не только к снижению водопроницаемости, но и уменьшает возможные влагозапасы почвы, увеличивает объём поверхностного стока, что в итоге усиливает процесс эрозии почвы [2].

Мы определили основные водно-физические свойства пахотного слоя почв на трёх участках ЗПО, результаты исследования приведены в таблице 1.

Из представленных данных следует закономерность уплотнения верхнего слоя почвы на каждом из исследованных весной и осенью 2014-2015 гг. участков по сравнению с периодом 1986-1988 гг. Также выявлено, что плотность сложения почвы весной выше, чем осенью. Полная и наименьшая влагоёмкости в ходе эксплуатации ЗПО незначительно снижаются по сравнению с фоновыми показателями. ЗПО находятся в непосредственной близости от р. Чёрной, в которую разгружаются грунтовые воды ЗПО, поэтому мы проанализировали состав её вод выше, напротив и ниже ЗПО и сравнили полученные показатели с ПДК для водоёмов рыбохозяйственного назначения, чтобы определить влияние полей орошения на водный объект. Показатели качества речной воды представлены в таблице 2.

При изучении химического состава вод р. Чёрной выше ЗПО по течению установлено превышение ПДК для водоёмов рыбохозяйственного назначения по хлоридам. Концентрация сульфатиона превышает ПДК как выше ЗПО, так и ниже, хотя сами показатели больше в верхнем течении реки. Выявлено значительное превышение ПДК для ионов магния и меди, содержания общего

Место отбора почвы, год	Показатель	Влажность почвы, %	Плотность сложения (плотность) почвы, г/см ³	Наименьшая влагоёмкость почвы, %	Полная влагоёмкость почвы, %
Средние значения	осень 1986-1988	_	_	24,80	48,72
по ЗПО	весна 1986-1988	_	1,13	36,33	54,08
Γ № 7	осень 2014	35,3	1,197	21,32	46,59
	весна 2015	45,5	1,377	32,19	51,30
Γ № 15	осень 2014	22,8	1,216	20,86	44,23
1 1/2 13	весна 2015	25,0	1,346	33,59	52,70
Γ№ 11	осень 2014	26,8	1,235	22,40	48,72
	весна 2015	30,3	1,359	32,54	51,55
Фон	весна 2015	21,5	1,172	35,29	54,8

2. Химический состав вод р. Чёрной выше и ниже по течению реки от ЗПО

Год и место	2001	2015			
отбора	ниже ЗПО	выше ЗПО		ниже ЗПО	ПДК (рыбохоз.)
Показатель		исток	плотина	ниже эпо	, , ,
Cl-, мг/л	212,8	353,9	432,2	197,3	300,0
НСО₃, мг/л	573,4	826,6	732,0	594,7	не норм.
SO_4^{2-} , мг/л	178,6	230,4	268,8	153,6	100
HS⁻, мг/л	_	15,8	15,0	16,2	отсут.
Са ²⁺ , мг/л	82,82	119,6	102,2	85,0	180,0
Mg^{2+} , мг/л	73,86	60,0	53,6	52,2	40,0
Жёсткость общая, мг-экв/л	_	10,98	9,58	8,60	не норм.
Zn ²⁺ , мг/л	_	0,008	0,005	0,004	0,01
Fe, мг/л	_	0,19	0,71	0,34	0,1
Сu ²⁺ , мг/л	_	0,056	0,085	0,061	0,001
Азот аммонийный, мг N/л	не обн.	не обн.	0,20	не обн.	0,4
Взвешенные вещества, мг/л	_	23,5	20,0	5,26	10,0
ХПК, мг/л	_	33,30	50,02	25,0	30,0
Нефтепродукты, мг/л	не обн.	5,00	не обн.	не обн.	0,05
pH, LgcH	8,0	8,02	7,58	8,13	6,5–8,5
Сухой остаток, мг/л	1186,0	820,0	1140,0	600,0	не норм.
Оседающие вещества, см ³ /л	_	0,20	0,20	0,20	не норм.

железа, а также превышены ПДК по взвешенным веществам и ХПК. Стократное превышение ПДК по нефтепродуктам выявлено выше ЗПО по течению р. Чёрной, а так как далее по течению нефтепродукты не обнаружены, то это можно объяснить локальным загрязнением родника.

Химический состав сточных вод, используемых для орошения, является определяющим фактором урожайности и химического состава возделываемых культур. Известно, что доочистка сточных вод происходит в почве, а почва очищается при выносе химических веществ растениями [8]. В наших исследованиях мы определили содержание тяжёлых металлов, серы и некоторых питательных веществ в урожае сорго, возделываемом на ЗПО, и сравнили с аналогичными показателями для сорго на контрольном неорошаемом участке в колхозе Ленина Оренбургского района и ПДК (табл. 3, 4).

Содержание тяжёлых металлов в урожае сорго, отобранном на ЗПО, было меньше, чем на фоновом участке, но выявлено превышение ПДК по концентрации цинка на ЗПО в 3,5 раза, а на фоновом участке — в 4 раза. По меди было отмечено превышение ПДК на ЗПО в 4,5 раза, на

фоновом участке — в 5 раз. Урожайность зелёной массы сорго и её химический состав представлены в таблице 4.

Урожайность зелёной массы сорго больше на 3ПО при орошении сточными водами по сравнению с участком без орошения, но орошение даёт незначительную прибавку урожая. Содержание серы, натрия, кальция, азота и сырого протеина в зелёной массе сорго на массиве 3ПО было ниже, чем на фоновом участке.

В результате собственных исследований выявлено, что почва ЗПО за период 39-летней эксплуатации была переуплотнена, влагоёмкость стабильно снижалась на всех исследованных участках. Влагоёмкость почвы в весенний период была выше, чем в осенний, что явно указывает на сезонное переувлажнение почвы. Водно-физические свойства почвы оказывают негативное влияние на её химический состав и плодородие, поэтому необходима оптимизация режимов сброса сточных вод.

Установлено ухудшение экологического состояния вод р. Чёрной по сравнению с 2001 г., превышение ПДК для водоёмов рыбохозяйственного назначения по содержанию хлоридов, сульфатов,

3. Содержание тяжёлых металлов в урожае сорго, мг/кг

Место сбора травы	Свинец	Кадмий	Цинк	Медь
ЗПО ОГХК	0,11	0,013	35,9	13,5
Колхоз им. Ленина	0,12	0,014	40,0	15,0
(контроль)				
СанПиН 2.3.2. 1078-01	6,0	1,0	10,01	3,0
от 14.11.10 г. [9]				

4. Урожайность зелёной массы сорго и её химический состав

Показатели	ЗПО ОГХК	Колхоз им. Ленина (фон)
Урожайность зелёной	156	148
массы, ц/га		
Азот, %	1,68	3,0
Сырой протеин, %	10,5	18,7
Натрий, %	0,05	0,07
Кальций, %	0,54	0,62
Cepa, %	0,418	0,498

ионов магния, общего железа и меди, ХПК, нефтепродуктов и взвешенных веществ. Обнаружены сульфид-ион и тяжёлые металлы, которых не было в 2001 г.

Наблюдается чёткое снижение всех анализируемых показателей в р. Чёрной ниже ЗПО по сравнению с показателями среднего течения. Это объяснятся, скорее всего, тем, что частично загрязняющие вещества попадают в бассейн р. Чёрной с атмосферными осадками. Также в верхнем течении реки сооружены земляные плотины, и самое высокое содержание ионов исследуемых элементов находится в стоячей воде возле плотин. Необходимо убрать запруду в среднем течении р. Чёрной, тем самым восстановить естественную скорость течения, увеличить скорость разбавления загрязнителей и обеспечить естественную очистку в период весеннего снеготаяния.

Меньшее содержание тяжёлых металлов в образцах растительного сырья с орошаемого участка объясняется тем, что ежегодно на ЗПО снимают три урожая зелёной массы, тогда как на контрольном участке — один раз в сезон. Вероятнее всего, с этим же фактором связан незначительный рост урожая сорго на ЗПО по сравнению с неорошаемым фоновым участком. Столь малый прирост урожайности за счёт орошения, а также меньшее содержание азота и протеина в сорго с орошаемого массива можно объяснить отсутствием питательных веществ в сточных водах и нарушением режимов

полива, а также практически полным отсутствием мероприятий по увеличению плодородия почв ЗПО.

Значительное превышение ПДК по содержанию меди и цинка на обоих участках обусловлено геохимическим фоном Оренбургской области. Результаты исследований свидетельствуют о том, что почва достаточно промыта и наблюдается подтягивание солей к её поверхности, поэтому мы предлагаем заменить обычный сброс сточных вод на прерывистое дождевание, что будет способствовать лучшему поступлению воды в почву.

Выводы. Река Чёрная испытывает превышение техногенной нагрузки как со стороны ОГХК, так и в результате нерационального водопользования. Сброс сточных вод на ЗПО не является доминирующим фактором ухудшения состояния реки. За последние 39 лет установлена тенденция дальнейшего ухудшения водно-физических свойств почв на ЗПО. Количественное содержание тяжёлых металлов и соединений серы в урожае сорго, выращенном на ЗПО, позволяет использовать его в хозяйственных целях, но только в составе кормосмесей с урожаем, выращенном в других местах.

Для улучшения водно-физических свойств почвы, повышения урожайности и питательной ценности кормовых культур необходимо провести ряд мероприятий: внесение навоза (до 100 т/га) и суперфосфата (до 80 кг/га) под вспашку; чередование глубокой отвальной вспашки с плоскорезной обработкой; возврат в севооборот люцерны и кукурузы; использование части урожая в качестве сидератов; гипсование.

Литература

- 1. Мазур И.И., Молдаванов О.И. Курс инженерной экологии: учебник для вузов. М.: Высшая школа, 1999. 447 с.
- Гамм Т.А. Научные основы рациональной организации природно-технической системы. Екатеринбург: УрО РАН, 2003 486 с
- Ковалева Н.А. Использование сточных вод для орошения // Сборник научных работ ВНИИГиМ. 1978. С. 110–117.
- ГОСТ 17.4.4.02-84. Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа. М.: Стандартинформ, 2008.
- ГОСТ Р 51592-2000. Вода. Общие требования к отбору проб. М.: Изд-во стандартов, 2000.
- Гамм Т.А., Ишанова О.С. Практикум по природопользованию: учебное пособие. Оренбург: ОГУ, 2013. 98 с.
- ГОСТ 30178-96. Сырьё и продукты пищевые. Атомноабсорбционный метод определения токсичных элементов. М.: Стандартинформ, 2010.
- Степанова М.И., Калиев А.Ж. Влияние сточных вод Оренбургского газоперерабатывающего завода на мелиоративное состояние земель // Сборник научных трудов Саратовского СХИ. Саратов, 1980. С. 62–69.
- СанПиН 2.3.2.1078-01 Гигиенические требования безопасности и пищевой ценности пищевых продуктов // Бюллетень нормативных и методических документов Госсанэпиднадзора. 2002. Вып. 4 (10).