Морфология внеорганного венозного русла слепой кишки овец северокавказской породы в постнатальный период онтогенеза

В.А. Порублев, д.б.н., профессор, **Н.В. Агарков**, аспирант, ФГБОУ ВО Ставропольский ГАУ

Овцеводство занимает ведущее место в народном хозяйстве как источник продуктов питания и сырья для лёгкой промышленности [1]. Для успешного развития данной отрасли необходимо углублённое и всестороннее изучение строения, физиологических особенностей организма животных и его адаптивных возможностей к изменениям абиотических и биотических экологических факторов.

Наиболее важной из функциональных структур, которая позволяет поддерживать в организме необходимый уровень метаболизма, а также его адаптацию к изменяющимся факторам внешней и внутренней среды, является кровеносная система. Питательные вещества, вода, макро- и микроэлементы, витамины поступают в кровеносное и лимфатическое русло организма животных через тонкий и толстый отделы кишечника. Оптимальное кровоснабжение и венозная васкуляризация всех оболочек кишечника обеспечивают его нормальное функционирование. Нарушение

экстраорганного и инрамурального кровотока в органах, в том числе и кишечнике, ведёт к развитию различного рода их патологий.

Венозное русло изучено достаточно подробно [1-7], однако в настоящее время остаются неисследованными возрастные особенности морфологии внеорганного венозного русла слепой кишки овец северокавказской породы. Это определило цель исследования — детальное изучение строения, топографии и морфометрических показателей экстраорганных вен, осуществляющих отток венозной крови из стенки слепой кишки овец северокавказской породы.

Материал и методы исследования. Для изучения макроморфологии внеорганого венозного русла слепой кишки овец северокавказской породы на убойном пункте СПК «Восток» Ставропольского края были взяты 20 кишечников животных четырёх возрастных групп: новорождённые, в возрасте 1 мес., 4 мес.. 18 мес.

Материал был получен от клинически здоровых животных после их убоя согласно правилам проведения работ с использованием экспериментальных животных путём обескровливания.

В процессе исследования применяли методы препарирования, инъекции кровеносных сосудов контрастными массами, морфометрии, макрофотографии.

Результаты исследования. В результате проведённого исследования установлено, что отток венозной крови из стенки слепой кишки овец северокавказской породы осуществляется через подвздошнослепую вену, выносящую кровь в русло подвздошнослепоободочной вены, впадающей в общий корень тощекишечных вен. Подвздошнослепая вена берёт своё начало из первых венозных дугобщего корня тощекишечных вен, формирующих путём слияния одну из первых тощекишечных вен.

Проходя от верхушки слепой кишки в подвздошнослепой связке, подвздошнослепая вена собирает венозную кровь как из слепой, так и подвздошной кишок (рис. 1). Затем подвздошнослепая вена направляется дорсокраниально, пресекая с левой стороны подвздошную кишку, до области впадения первой вены проксимальной петли ободочной кишки (рис. 2). В дальнейшем подвздошнослепая вена продолжается как подвздошнослепоободочная.

Длина подвздошнослепой вены у ягнят при рождении составляла $5,42\pm0,01$ см, в возрасте 1 мес. $-11,22\pm1,17$ см, к концу 4 мес. $-18,84\pm1,41$ см, в 18 мес. $-21,12\pm0,19$ см (табл.).

В течение исследуемого периода постнатального развития длина подвздошнослепой вены у овец увеличилась в период от рождения до 1 мес. — в 2 раза, от 1 до 4 мес. — в 1,7 раза, с 4 до 18 мес. — в 1,1 раза. Таким образом, в течение первых 18 мес. постнатального периода онтогенеза длина подвздошнослепой вены овец увеличивается в 3,9 раза. Наиболее интенсивный рост длины подвздошнослепой вены овец наблюдается в период от рождения до месяца.

Диаметр подвздошнослепой вены у новорождённых ягнят был равен $2,00\pm0,08$ мм, в возрасте $1\,\,\mathrm{Mec.}-3,50\pm0,64$ мм, в последующие три месяца он увеличился до $4,50\pm0,50$ мм, в $18\,\,\mathrm{Mec.}$ составил $5,26\pm0,45$ мм (табл.). В течение исследуемого периода постнатального развития диаметр подвздошнослепой вены овец увеличился в период от рождения до $1\,\,\mathrm{Mec}$ мес. — в $1,8\,\,\mathrm{paзa}$, от $1\,\,\mathrm{до}$ 4 мес. — в $1,3\,\,\mathrm{pasa}$, от $4\,\,\mathrm{до}$ 18 мес. — в $1,2\,\,\mathrm{pasa}$. Таким образом, в течение первых $18\,\,\mathrm{Mec.}$ постнатального периода онтогенеза диаметр подвздошнослепой вены увеличился в $2,6\,\,\mathrm{pasa}$. Наиболее интенсивный рост диаметра подвздошнослепой вены овец наблюдается в период от рождения до месяца. В просвете подвздошнослепой вены на всём её протяжении

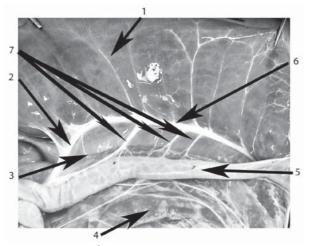


Рис. 1 – Топография подвздошнослепой вены ягнёнка в возрасте 4 мес.:

1 — слепая кишка; 2, 6 — подвздошнослепая вена; 3 — слепоподвздошная связка; 4 — спиральная петля ободочной кишки; 5 — подвздошная кишка; 7 — вены подвздошной кишки

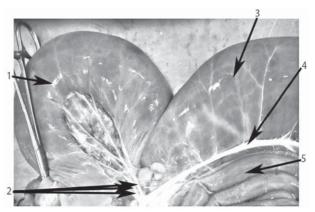


Рис. 2 – Топография подвздошнослепой вены и вен проксимальной петли ободочной кишки ягнёнка в возрасте 4 мес.:

1 – проксимальная петля ободочной кишки; 2 – 1-я, 2-я, 3-я вены проксимальной петли; 3 – слепая кишка; 4 – подвздошнослепая вена; 5 – спиральная петля ободочной кишки

Вена	Показатель	Возраст, мес.			
		новорождённые	1	4	18
Подвздошно- слепая	длина, см	5,42±0,01	11,22±1,17	18,84±1,41	21,12±0,19
	диаметр, мм	2,00±0,08	$3,50\pm0,64$	4,50±0,50	5,26±0,45
	число клапанов	4,20±0,80	$6,80\pm0,80$	13,20±0,80	17,00±4,00
	клапанный индекс	$0,74\pm0,03$	$0,60\pm0,00$	$0,70\pm0,00$	$0,80\pm0,01$
Подвздошно- слепоободочная	длина, см	1,74±0,01	3,52±0,08	6,78±0,55	9,36±0,51
	диаметр, мм	2,90±0,04	$3,94\pm0,03$	5,02±0,05	6,98±0,63
	число клапанов	1,80±0,80	$2,80\pm0,80$	3,20±0,80	4,20±0,80
	клапанный индекс	1,00±0,20	$0,76\pm0,03$	$0,47\pm0,02$	$0,44\pm0,01$
Общая брыжеечная	длина, см	2,08±0,01	4,54±0,01	6,48±0,63	7,76±0,41
	диаметр, мм	4,88±0,19	$5,66\pm0,31$	8,22±0,51	9,86±0,45
	число клапанов	1,20±0,80	$1,80\pm0,80$	2,20±0,80	3,20±0,80
	клапанный индекс	0,57±0,18	$0,39\pm0,05$	0,33±0,01	0,41±0,01

Возрастные изменения морфометрических показателей внеорганного венозного русла слепой кишки овец северокавказской породы в постнатальный период онтогенеза $(X\pm Sx)$

встречаются двустворчатые клапаны. Их число у новорождённых животных было равно $4,20\pm0,80,$ у месячных — $6,80\pm0,80,$ у 4-месячных — $13,20\pm0,80,$ у 18-месячных — $17,00\pm4,00.$ Клапанный индекс был равен у новорождённых животных $0,77\pm0,03,$ в возрасте 1 мес. — $0,60\pm0,00,$ 4 мес. — $0,70\pm0,00,$ 18-месячных — $0,80\pm0,01$ (табл.).

Подвздошнослепоободочная вена является продолжением подвздошнослепой после впадения в последнюю первой вены проксимальной петли и направляется краниодорсально. По ходу в неё впадают вторая и третья вены проксимальной петли (рис. 2), вены спиральной и начального участка дистальной петель ободочной кишки (рис. 3). В дальнейшем подвздошнослепоободочная вена вливается в русло общего корня тощекишечных вен.

Длина подвздошнослепоободочной вены у новорождённых ягнят была равна $1,74\pm0,01$ см, в возрасте 1 мес. $-3,52\pm0,08$ см, у 4-месячных животных $-6,78\pm0,55$ см, в 18 мес. $-9,36\pm0,51$ мм. В течение исследуемого периода постнатального развития длина подвздошнослепоободочной вены овец увеличилась в период от рождения до 1 мес. в 2 раза, от 1 до 4 мес. - в 1,9 раза, от 4 до 18 мес. - в 1,4 раза (табл.). Таким образом, в течение первых 18 мес. постнатального периода онтогенеза длина подвздошнослепоободочной вены овец увеличивается в 5,3 раза. Наиболее интенсивный рост длины этой вены наблюдается в возрасте от рождения до 1 мес. (табл.).

Диаметр подвздошнослепоободочной вены у новорождённых ягнят составлял $2,90\pm0,04$ мм, в 1-й месяц постнатального развития — $3,94\pm0,03$ мм, в возрасте 4 мес. — $5,02\pm0,05$ мм, к 18 мес. — $6,98\pm0,63$ см.

В течение исследуемого периода постнатального развития диаметр подвздошнослепоободочной вены у овец в возрасте от рождения до 1 мес. увеличился в 1,4 раза, от 1 до 4 мес.— в 1,3 раза, от 4 до 18 мес.— в 1,3 раза. Таким образом, в течение первых 18 мес. постнатального периода онтогенеза диаметр подвздошнослепоободочной вены овец увеличивается в 2,4 раза. Наиболее интенсивное

увеличение диаметра подвздошнослепоободочной вены овец наблюдается в период от рождения до 1 мес. (табл.).

В просвете подвздошнослепоободочной вены на всём её протяжении встречаются двустворчатые клапаны. Их количество у новорождённых животных составляло $1,80\pm0,80$, в возрасте 1 мес. $-2,80\pm0,80$, 4 мес. $-3,20\pm0,80$, 18 мес. $-4,20\pm0,80$. Клапанный индекс был равен у новорождённых животных $1,00\pm0,20$, у месячных $-0,76\pm0,03$, 4-месячных $-0,47\pm0,02$, 18-месячных $-0,44\pm0,01$.

Общая брыжеечная вена берёт своё начало в области слияния общего корня тощекишечных вен с подвздошнослепоободочной веной (рис. 3). Она направляется краниодорсально в брыжейке между двенадцатиперстной кишкой и дистальной петлёй ободочной кишки, идёт между долями поджелудочной железы и под первым поясничным позвонком, изменяя своё направление, следует краниовентрально, впадая в воротную вену печени на уровне 11—12-го грудного позвонка. Общая брыжеечная вена осуществляет отток венозной крови из тонкого и толстого отделов кишечника.

Длина общей брыжеечной вены у новорождённых ягнят составляла 2.08 ± 0.01 см, у месячных — 4.54 ± 0.01 см, 4-месячных — 6.48 ± 0.63 см, 18-месячных — 7.76 ± 0.41 см (табл.). За исследуемый период постнатального развития длина общей брыжеечной вены овец увеличилась в период от рождения до 1 мес. в 2.2 раза, от 1 до 4 мес. — в 1.4 раза, от 4 до 18 мес. — в 1.2 раза (табл.). Таким образом, в течение первых 18 мес. постнатального периода онтогенеза длина общей брыжеечной вены у овец увеличивается в 3.7 раза. Наиболее интенсивное увеличение длины этой вены наблюдается в период постнатального развития от рождения до 1 мес.

Диаметр общей брыжеечной вены у новорождённых животных был равен $4,88\pm0,19$ мм, по окончании 1-го месяца постнатального развития она увеличилась и составила $5,66\pm0,31$ мм, от 1 до 4 мес. — $8,22\pm0,51$ мм, к 18 мес. составляла $9,86\pm0,45$ мм. В течение исследуемого периода пост-

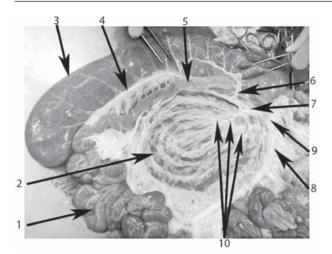


Рис. 3 – Топография внеорганных вен кишечника 18-месячных овец северокавказской породы: 1 – тощая кишка; 2 – спиральная петля ободочной кишки; 3 – слепая кишка; 4 – подвздошнослепая вена; 5 – подвздошная кишка; 6 – вены проксимальной петли ободочной кишки; 7 – подвздошнослепоободочная вена; 8 – общий корень тощекишечных вен; 9 – начальный участок общей брыжеечной вены; 10 – вены спиральной петли ободочной кишки

натального развития диаметр общей брыжеечной вены у овец увеличился в период от рождения до 1 мес. в 1,2 раза, от 1 до 4 мес.— в 1,5 раза, от 4 до 18 мес. — в 1,2 раза. Таким образом, в течение первых 18 мес. постнатального периода онтогенеза диаметр общей брыжеечной вены у овец увеличился в 2 раза (табл.). Наиболее интенсивный рост диаметра общей брыжеечной вены отмечается в период от 1 до 4 мес.

В просвете общей брыжеечной вены на всём её протяжении встречаются двустворчатые клапаны. Их количество у новорождённых животных составляло $1,20\pm0,80$, в возрасте $1 \text{ мес.} - 1,80\pm0,80,4$ мес. $-2,20\pm0,80,18$ мес. $-3,20\pm0,80$. Клапанный индекс был равен у новорождённых животных

 $0,57\pm0,18$, у месячных $-0,39\pm0,05$, 4-месячных $-0,33\pm0,01$, 18-месячных $-0,41\pm0,01$.

Выводы. 1. Отток венозной крови из стенки слепой кишки у овец осуществляется через подвздошнослепую вену, переходящую в подвздошнослепоободочную, вливающуюся в свою очередь в общую брыжеечную вену.

- 2. За период постнатального развития овец от рождения до месячного возраста отмечается наиболее интенсивное увеличение длины подвздошнослепоободочной, подвздошнослепой и общей брыжеечной вен, а также диаметра подвздошнослепоободочной и подвздошнослепой вен.
- 3. В возрасте от 1 до 4 мес. у овец отмечается наиболее интенсивное увеличение диаметра общей брыжеечной вены.

Литература

- 1. Борисенко Л.Н., Шпыгова В.М. Венозное русло слепой кишки новорождённых телят чёрно-пёстрой породы // Научное обеспечение инновационного развития животноводства: матер. Междунар. науч.-практич. конф., посвящ. 60-летию ректора ФГОУ ВПО Ижевской ГСХА, доктора сельскохозяйственных наук, профессора А.И. Любимова / Ижевская государственная сельскохозяйственная академия. Ижевск, 2010. С. 262—264.
- Груздев П.В., Порублев В.А. Кровоснабжение слизистой оболочки 12-перстной кишки овец ставропольской породы 18-месячного возраста // Диагностика, лечение и профилактика заболеваний сельскохозяйственных животных: сб. науч. тр. / Ставропольский ГАУ. Ставрополь, 1999. С. 74—77.
- Позов С.А. Значение микроэлементов в профилактике смешанных заболеваний сельскохозяйственных животных / С.А. Позов, В.А. Порублев, Н.Е. Орлова, С.А. Эзиев, Е.А. Ященко // Ветеринарный врач. 2014. № 4. С. 64–66.
- Порублев В.А. Сравнительная и возрастная макро- и микроморфология артериального русла тонкого и толстого отделов кишечника овец и коз: дисс. ... докт. биол. наук. Ставрополь, 2005. 337 с.
- Порублев В.А. Изучение морфологии и артериального русла слепой кишки 18-месячных коз зааненской породы // Труды Кубанского государственного аграрного университета. 2005. № 414 (442). С. 184—186.
- Порублев В.А., Агарков Н.В. Морфологические особенности слепой кишки овец северокавказской породы в постнатальном периоде онтогенеза // Известия Оренбургского государственного аграрного университета. 2016. № 2 (58). С. 79—82.
- May M.S., Neil D.S. The anatomy of the sheep with instructoins for its dissection. Brisbane, 1955. P. 235.