Свойства почвообразующих пород Тура-Пышминского междуречья

Д.И. Ерёмин, д.б.н., профессор, ФГБОУ ВО ГАУ Северного Зауралья

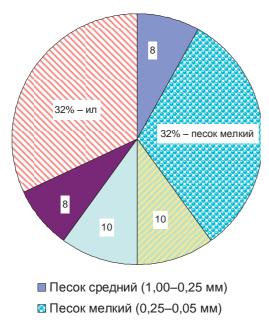
Одним из факторов почвообразования В.В. Докучаев выделял материнские породы, поскольку именно от них основные свойства современных почв переходят в наследство. Прежде всего это гранулометрический состав, от которого зависят почти все элементы плодородия. Наличие водорастворимых солей и карбоната кальция в почвообразующих породах способно повлиять на формирование почв засолённого ряда. Особенности строения толщи почвообразующих пород обусловливают те или иные водно-физические свойства и водный режим. Учитывая специфику климата и залегания почвообразующих пород, можно довольно успешно прогнозировать динамику плодородия современных почв, возможности их улучшения или предотвращения появления неблагоприятных свойств.

Господствующие почвообразующие породы Западно-Сибирского региона представлены лёссовидными суглинками и глинами аллювиального и делювиального происхождения. Все эти породы карбонатны с различным запасом бикарбоната кальция. В южной части региона почвообразующие породы нередко содержат в своём составе водорастворимые соли, которые оказывают непосредственное действие на современное почвообразование. Кроме представленных пород встречаются пески, супеси и лёгкие суглинки. Эти породы в большинстве случаев приурочены к древним долинам рек. В некоторых местах они выходят на поверхность, формируя там почвы подзолистого типа. На лёгких суглинках обычно располагаются серые лесные почвы, характеризующиеся выщелоченностью или оподзоленностью.

В геологическом строении Тура-Пышминское междуречье расположено на покровных карбонатных суглинках и глинах со своеобразным гранулометрическим составом, физическими, химическими и водными свойствами. Мощность отложений этих пород достигает 5 м. Наличие песчаных прослоек привело к формированию современных почв на анализируемой территории с неблагоприятными водными и агрофизическими свойствами [1, 2]. Как отмечал Л.Н. Каретин, даже чернозёмы Зауралья обладают неудовлетворительными водно-физическими свойствами по причине формирования их на многочленных почвообразующих породах [3]. Это также неоднократно подтверждалось и другими исследователями в более поздние периоды [4-6].

Цель нашего исследования заключалась в анализе свойств почвообразующих пород, сфор-

мировавшихся при непосредственном участии речных систем.


Материал и методы исследования. Грунты изучали на территории Тюменского района и г. Тюмени. Бурение проводилось на глубину до 5 м. При отборе образцов выделяли глубину залегания каждого слоя. Анализ физических и химических свойств отобранных грунтов проводился в соответствии с государственными стандартами. Гранулометрический состав определяли методом лазерной гранулометрии и по Качинскому; плотность сложения и твёрдой фазы - по Качинскому; коэффициент фильтрации - согласно рекомендациям по методике лабораторных испытаний грунтов (П-12-83); содержание гигроскопической влаги - согласно ГОСТу 28268-89; порозность общая — расчётная; состав водорастворимых солей - по Аринушкиной; органический углерод - методом Тюрина в модификации ЦИНАО. Результаты исследования подвергались статистической обработке с использованием Microsoft Excel.

Результаты исследования. Как показал визуальный анализ, представленные почвообразующие породы имеют жёлто-палевую окраску, тонкопористое сложение, слабо уплотнены. Повсеместно встречаются опесчаненные или глинистые прослойки, присутствует в рассеянном состоянии галька.

По содержанию фракций гранулометрического состава покровные породы данного региона существенно отличаются от лёссовидных грунтов, к которым некоторые исследователи пытаются их отнести. Лёссы и лёссовидные грунты европейской части России имеют очень высокое содержание пыли (0,05–0,001 мм) — от 60 до 80%, в том числе крупной пыли (0,05–0,01 мм) — 30–50%, состоящей из вторичных минералов. Анализируемые покровные суглинки характеризуются очень низким содержанием фракции пыли — от 10 до 40%, из которых на долю фракции крупной пыли приходится не более 20% (рис.). Такое содержание крупной пыли не позволяет отнести анализируемый грунт к типу лёссовидных.

Кроме того, этот грунт, в отличие от лёссов и лёссовидных суглинков европейской части России, содержит в 2 раза меньше карбоната и гидрокарбоната кальция, а также характеризуется более высокой степенью опесчаненности. Лёгкие и средние суглинки в большинстве относятся к группе иловато-песчаных грунтов. Тяжёлые суглинки обычно песчано-иловатые, а глинистый грунт характеризуется пылевато-иловатым гранулометрическим составом.

Изученные покровные суглинки и глина, распространённые на территории Тюменского района,

- □ Пыль крупная (0,5–0,01 мм)
- □ Пыль средняя (0,01-0,005 мм)
- Пыль мелкая (0,005–0,001 мм)
- № Ил (<0,001 мм)

Рис. – Гранулометрический состав покровных суглинков Тура-Пышминского междуречья. Количество определений – 45. Глубина отбора – 3×5 м

не засолены (табл. 1, 2). Максимальная сумма ионов составляет 0,266% в глинистом грунте. В лёгких суглинках сумма ионов уменьшается, достигая 0,131% от массы грунта. Сухой остаток представлен преимущественно бикарбонатом кальция. Изучаемые грунты характеризуются отсутствием карбонатов (CO_3), которые можно встретить в минимальных количествах (не более 2 мг/100 г) в глинистом грунте, изъятом с глубины 4,0-5,0 м.

Легкосуглинистые и среднесуглинистые грунты до глубины 4,0 м содержат минимальное количество водорастворимых солей, которые незначительно аккумулируются в слое 4,5-5,0 м. Это связано с частичным вымыванием их нисходящими потоками воды вследствие высокой водопроницаемости этих грунтов. В тяжелосуглинистых и глинистых разновидностях процесс миграции солей менее заметен - их содержание постепенно возрастает уже на глубине 3 м. Однако в этом слое соли натрия и калия почти отсутствуют, что положительно повлияло на формирование современных почв без признаков засоления. Изъятый при строительных работах такой грунт может быть использован для создания искусственных почвосмесей при обустройстве и отсыпке городских территорий [7, 8].

В составе грунта, изъятого с глубины 1,5-5,0 м, был обнаружен органический углерод, который

1. Данные анализа водной вытяжки грунта различного гранулометрического состава

Разновидность почвообразующих пород		Глубина отбора, м								
	Ионы	1,5-2,0		3,0-3,5		4,5-5,0				
по вообразующих пород		мг/100 г	%	мг/100 г	%	мг/100 г	%			
Лёгкий суглинок (*n=15)	HCO ₃	72	0,072	83	0,083	92	0,092			
	CO ₃	0	0	0	0	0	0			
	CI	17	0,017	18	0,018	24	0,024			
	SO_4	7	0,007	7	0,007	12	0,012			
	Ca	25	0,025	31	0,031	38	0,038			
	Mg	6	0,006	5	0,005	6	0,006			
	Na+K	4	0,004	5	0,005	7	0,007			
	HCO ₃	82	0,082	84	0,084	92	0,092			
	CO ₃	0	0	0	0	0	0			
Средний суглинок (n=22)	CI	18	0,018	17	0,017	25	0,025			
	SO_4	4	0,004	5	0,005	8	0,008			
	Ca	28	0,028	35	0,035	37	0,037			
	Mg	5	0,005	6	0,006	6	0,006			
	Na+K	5	0,005	6	0,006	8	0,008			
	HCO ₃	120	0,120	31	0,031	37	0,037			
	CO ₃	0	0	0	0	0	0			
Tavräarr	CI	11	0,011	11	0,011	12	0,012			
Тяжёлый суглинок (n=18)	SO_4	3	0,003	4	0,004	3	0,003			
	Ca	30	0,030	40	0,04	40	0,040			
	Mg	7	0,007	7	0,007	8	0,008			
	Na+K	50	0,050	50	0,050	6	0,006			
Глина (n=10)	HCO ₃	160	0,160	18	0,018	21	0,021			
	CO ₃	0	0	0	0	2	0,002			
	CI	12	0,012	12	0,012	16	0,016			
	SO_4	40	0,004	50	0,050	50	0,050			
	Ca	40	0,040	50	0,050	50	0,050			
	Mg	8	0,008	8	0,008	9	0,009			
	Na+K	6	0,006	1	0,001	2	0,002			
n – число образцов	n – число образцов									
_										

				Плотность				
Разновидность почвообразующих пород	Сумма ионов, %	Углерод органиче- ский, %	рН, ед	сложе-	твёрдой фазы	Ообщая порозность, % от объёма	Гигроско- пическая влага, % от массы	Коэффи- циент фильтрации, м/сутки
Лёгкий суглинок	0,131	0,12	7,8	1,44	2,70	45,4	2,5	6,3
Средний суглинок	0,142	0,12	7,8	1,56	2,72	42,3	2,9	5,7
Тяжёлый суглинок	0,221	0,27	7,9	1,62	2,78	40,5	4,4	4,2
Гпина	0.266	0.35	7.9	1.54	2 77	45.2	4.6	3.4

2. Химические и физические свойства грунтов разного гранулометрического состава

выходит в состав гумусовых веществ. Необходимо отметить, что эти вещества преимущественно встречаются в слое 1,5–2,0 м тяжелосуглинистого и глинистого грунта — их содержание достигает 0,27–0,35% от массы. В более лёгких по гранулометрическому составу грунтах их можно встретить и в слое 3,0–3,5 м. Обнаруженный углерод входит в состав подвижных фульвокислот, соли которых являются водорастворимыми и способны мигрировать вглубь под действием нисходящих токов воды [9]. Данные кислоты обычно реагируют с катионами щелочноземельных металлов, входящими в состав бикарбонатов, и не оказывают негативного действия на бетон или строительные конструкции.

Наличие гидрокарбоната кальция обусловливает слабощелочную реакцию грунта, достигающую в тяжёлых суглинках и глине 7,9 ед. В более лёгких разновидностях — pH не имеет существенных отличий (7,8 ед.).

Исследуемые почвообразующие породы по своим физическим показателям значительно отличаются от лёссовых пород европейской части России. Плотность твёрдой фазы значительно выше вследствие особенностей минералогического состава: в лёгких и средних суглинках она составляет 2,70-2,72 г/см³, тогда как в тяжёлых суглинках и глине -2,77-2,78 г/см³. Однако плотность сложения по сравнению с европейскими аналогами грунтов, напротив, меньше и составляет 1,44—1,62 г/см³. Нужно отметить, что сильной корреляционной связи между плотностью и гранулометрическим составом не обнаружено. Полученные значения плотности твёрдой фазы характеризуют грунт как хорошее для строительных объектов основание с высокой несущей способностью.

Общий объём пустот (пористость) довольно большой, особенно учитывая тот факт, что грунт находится на глубине 1,5—5,0 м. Пористость варьирует от 40,5 до 45,4% от объёма грунта. Содержание гигроскопической влаги, а следовательно, и максимальной гигроскопичности, хорошо коррелирует с содержанием физической глины. В легкосуглинистом и среднесуглинистом грунтах содержание гигроскопической влаги составляет 2,5—2,9% от массы. В более тяжёлых разновидностях грунта она возрастает до 4,6%.

Водопроницаемость определялась в нескольких точках на грунтах с различным гранулометрическим составом. Наивысшую водопроницаемость имеют легкосуглинистые грунты - коэффициент фильтрации составляет 6,3 м/сутки. Минимальная водопроницаемость отмечена у глины — 3,4 м/сутки. Можно установить наличие высокой корреляционной связи между коэффициентом фильтрации и водопроницаемостью, это справедливо для однородных грунтов. Однако, как мы уже указывали, породы, на которых располагается Тюмень и её окрестности, слоистые, что делает их в отдельных случаях водонепроницаемыми. Причиной этого является создание слоя капиллярно-подпертойподвешенной влаги. Кроме того, в весенний период (иногда до середины июня) в профиле породы остаются мерзлотные прослойки, водопроницаемость которых равна нулю. Учитывая эти факторы, можно сделать вывод, что водопроницаемость почвообразующих пород на территории Тура-Пышминского междуречья довольно непостоянная, что привело к проявлению комплексности современного почвенного покрова.

Выводы.

- 1. Покровные суглинки и глины Тура-Пышминского междуречья имеют мощность до 5 м, малокарбонатны, слоисты. Гранулометрический состав преимущественно песчано-илованый. Низкое содержание фракции пыли не позволяет отнести их к группе лёссовидных отложений.
- 2. Грунт на всю глубину его залегания пресный (сухой остаток менее 0,1%). Из солей преобладает гидрокарбонат кальция. Верхние 3 м отложений характеризуются минимальным содержанием ионов, вследствие миграции на глубину 5 м.
- 3. Покровные суглинки имеют благоприятные показатели физических свойств, отличающиеся от европейских аналогов. Водопроницаемость однородных по гранулометрическому составу почвообразующих пород классифицируется как хорошая. При наличии опесчаненных прослоек корреляция между коэффициентом фильтрации и гранулометрическим составом нарушается. Водопроницаемость таких грунтов резко уменьшается, а на отдельных участках отсутствует полностью, негативно влияя на водный режим современных почв.

- Литература 1. Моторин А.С., Букин А.В. Пойменные почвы лесостепной зоны Северного Зауралья / ГНУ НИИСХ Северного Зауралья
- Россельхозакадемии. Новосибирск, 2014. 228 с. 2. Моторин А.С., Букин А.В. Гранулометрический состав и химические свойства аллювиальных почв поймы реки Пышма // Аграрный вестник Урала. 2012. № 8 (100).
- $C_{69}-72$ 3. Каретин Л.Н. Почвы Тюменской области. Новосибирск:
- Наука, 1990. 286 с. 4. Еремин Д.И. Агрогенное изменение гранулометрического состава при распашке чернозёма выщелоченного в лесостепной зоне Зауралья // Вестник КрасГАУ. № 8. 2014. C. 34-36.
- 5. Рзаева В.В., Еремин Д.И. Изменение агрофизических свойств чернозёма выщелоченного при длительном использовании различных систем основной обработки и минеральных

- удобрений в Северном Зауралье // Вестник КрасГАУ. 2010. № 3. C. 60–66.
- 6. Ерёмин Д.И., Моисеев А.Н. Влияние севооборотов на агрофизические свойства чернозёма выщелоченного // Сибирский вестник сельскохозяйственной науки. 2012.
- № 6. C. 26–32. 7. Iglovicov A.V. The development of artificial phytocenosis in environmental construction in the Far North / A.V. Iglovicov // Procedia Engineering, 2016. No 165, pp. 800–805.
- 8. Eremin D., Eremina, D. Influence of granulometric composition structure of anthropogenic- reformed soil on ecology of infrastructure / D.I. Eremin, D.V. Eremina // Procedia
- Engineering, 2016. No. 165, pp. 788–793. 9. Eremin D.I. Changes in the content and quality of humus in leached chernozems of the Trans-Ural forest-steppe zone under the impact of their agricultural use / D.I. Eremin // Eurasian Soil Science. 2016. Vol. 49. No. 5. pp. 538-545.