Влияние густоты стояния растений на продуктивность сахарного сорго в условиях юго-западного Таджикистана

М.С. Норов, д.с.-х.н., профессор, **Д. Миралиев**, соискатель, Таджикский аграрный университет

Сорго является ценной кормовой культурой. Ценность её заключается в том, что при полном созревании зерна большая часть листьев и стеблей остаётся зелёными и сочными. Такая особенность позволяет одновременно получать концентрированный корм в виде зерна и сочный — в виде засилосованных листьев и стеблей [1—3]. Корма, приготовленные из зерна сорго, высокопитательные и хорошо поедаются, что способствует быстрому увеличению массы животных. Большую ценность представляют они при откорме свинопоголовья и сельскохозяйственных птиц [4, 5]. В 100 кг зерна сорго содержится 122 корм. ед. и 7,8 кг переваримого протеина [6].

Зелёная масса характеризуется высокими кормовыми качествами, превосходя по своей питательности многие кормовые растения. В 100 кг зелёной массы содержится 24,2 корм. ед. и 2,6 кг переваримого протеина [7].

Важной биологической особенностью сорго является способность растений к отрастанию после скашивания. В условиях Таджикистана без дополнительных затрат на повторный посев можно получить ещё один-два урожая зелёной массы или зерна за счёт отавы сорго. При этом экономится лучшая часть вегетационного периода, так как отпадает необходимость проведения летней вспашки и предпосевной обработки почвы, которые требуют довольно значительных затрат времени и средств.

Материал и методы исследования. Опыты проводили в 2010—2015 гг. в фермерском хозяйстве Дангаринского района Хотлонской области Республики Таджикистан. В опыте изучали густоту стояния сорго 40, 50, 60, 70 и 80 тыс. раст. на 1 га. Посев проводили сеялкой СПЧ-6М с междурядьями 60 см в первой декаде апреля.

В течение вегетации вносились минеральные удобрения из расчёта 180 кг/га азота, 100 кг фосфора и 60 кг/га калия. Из них под основной посев вносили по 130 кг/га азота, 70 кг/га фосфора и

всю годовую норму калия, а остальная их часть под отаву сорго.

Учёт и наблюдения проводили согласно методике ВИК им. В. Р. Вильямса [8].

Цель исследования — изучение особенностей формирования роста, развития сорго и разработка приёмов технологии их возделывания.

Результаты исследования. Густота стояния растений оказывает определённое влияние на продолжительность прохождения отдельных фаз развития, особенно в период от вымётывания метёлок до созревания зерна. Начиная с периода вымётывания метёлок проявляется тенденция к увеличению продолжительности времени прохождения очередных фаз развития.

При этом по мере приближения срока созревания разница между разреженными и загущёнными посевами становится всё более заметной. Так, если в период от вымётывания метёлок до цветения разница в прохождении фаз развития между вариантами опыта не превышала 1—2 сут., то наступление полной спелости на загущённых вариантах отмечалось на 5 сут. позже, чем при густоте 40 и 50 тыс. раст. на 1 га. Наибольшая продолжительность прохождения фаз развития отмечалась у сорго сорта Гиссарское-45. При общей продолжительности вегетационного периода у сорго сорта Марджона 83—88 сут., а у сорго Гиссарское-45 он составлял 120 сут.

Накопление зелёной и воздушно-сухой массы растениями сорго достигает максимума перед фазой полной спелости зерна. В этот период весьма чётко видна закономерность между вариантами с различной густотой стояния. Так, перед уборкой урожая максимальная масса надземной массы одного растения сорго сорта Марджона была выявлена в варианте с густотой 40 тыс. раст. на 1 га — 905,6, а воздушно-сухой массы — 302 г. В вариантах с густотой 70 и 80 тыс. растений на 1 га значение этого показателя составляли соответственно 820,0—700,0 г и 273,0—233,4 г.

Известно, что одной из ценных биологических особенностей сорго является его способность к

1. Суммарный урожай зерна и листостебельной массы сорго при первом укосе в зависимости от густоты стояния растений, т/га (среднее за 2013–2015 гг.)

Сорт, норма высева, тыс/га	Урожайность		Выход	
	зерна	листостебельной массы	кормовых единиц	переваримого протеина
Гиссарское-45, 60 (ст.)	4,0	43,9	13,8	1,21
Марджона, 40	2,8	32,5	10,0	0,87
Марджона, 50	3,5	37,7	11,9	1,15
Марджона, 60	4,1	43,8	13,9	1,23
Марджона, 70	4,6	51,5	16,0	1,40
Марджона, 80	3,8	47,6	14,5	1,24

кущению, т. е. образованию дополнительных боковых побегов, которые при благоприятных условиях могут также формировать метёлки с зерном. Наибольшая кустистость отмечена при густоте стояния растения 40 тыс. раст. на 1 га. К моменту уборки по этому варианту в среднем за три года было 2,22 побега, из которых 2,12 побега были с нормально развитыми и созревшими метёлками. Увеличение густоты стояния снижало как общую, так и продуктивную кустистость. Наименьшая кустистость отмечалась при густоте стояния растений 70—80 тыс. раст. на 1 га, где в среднем на одно растение приходилось от 1,50 до 1,83 стебля, из которых продуктивными были 1,46—1,75 побега.

Густота стояния растений оказывает влияние и на изменение толщины главного стебля растений. Она закономерно снижается по мере увеличения количества растений в посеве. В фазе 6-8 листьев в варианте с густотой 40 тыс. раст. на 1 га толщина главного стебля составляла $12,6\,$ мм, с густотой 80 тыс. раст. на 1 га $-11,5\,$ мм. Такая же закономерность наблюдается и в последующих фазах развития растений.

Изменение характера кущения растений сказывается и на формировании метёлок. В разреженных посевах, где создаются лучшие условия для роста и развития растений, образуются более крупные метёлки, чем в загущённых посевах.

В структуре урожая по мере загущения посевов снижается доля метёлок, увеличивается процентное содержание листьев и стеблей. При этом самые низкие показатели получены на загущённых посевах. В разреженных посевах растения развиваются более мощные, чем в загущённых, что способствует формированию на них более крупных по размеру метёлок.

Таким образом, густота стояния растений сорго существенно влияет на формирование урожая сорго. В разреженных посевах накопление урожая одним растением значительно выше, чем в загущённых посевах. Но в связи с тем, что в загущённых посевах на единицу площади приходится удвоенное количество растений, суммарный урожай увеличивается. Наиболее оптимальным вариантом при этом, как показывают результаты исследования, является густота 70 тыс. раст. на 1 га, обеспечивающая получение наибольшего урожая зерна (табл. 1).

Данные таблицы 1 показывают, что по урожаю зерна сорт сорго Марджона при первом укосе при густоте стояния 70 тыс. растений на 1 га позволил получить с каждого гектара по 4,6 т зерна. Как уменьшение густоты стояния, так и её увеличение ведут к снижению урожайности.

Одним из ценных биологических свойств сорго сорта Марджона является то, что стебли и листья даже в период созревания зерна остаются сочными и зелёными. Благодаря этому их можно использовать для силосования после уборки метёлок.

Важной биологической особенностью сорго является способность растений к отрастанию после скашивания. По данным многих исследователей, сорго в различных районах хорошо отрастает и в течение лета даёт два, а в благоприятные годы и на орошаемых землях — три укоса.

В нашем исследовании отрастание отавы сорго сорта Марджона было отмечено уже на третийчетвёртый дн. после уборки основного урожая. Наблюдения за ростом и развитием растений показали, что здесь отмечаются почти те же закономерности при прохождении фаз развития, что при основном посеве.

Формирование урожая отавы сорго происходит в иных условиях, чем при основном посеве. Наряду с изменением густоты стояния растения испытывают воздействие изменяющихся климатических условий, которое выражается в том, что в процессе увеличения количества растений наблюдается одновременно снижение массы растений. Изменяется также размер метёлок и листьев. Всё это в конечном итоге отражается на структуре получаемого урожая. Так, в варианте с густотой 40 тыс. раст. на 1 га масса одного растения достигала 572,0 г, при увеличении густоты стояния до 80 тыс. раст. на 1 га она уменьшалась по сравнению с густотой 40 тыс. раст. на 1 га на 105,0 г и составила 465,0 г, а содержание метёлок в урожае снизилось на 5,8%.

Всё вышеизложенное показывает, что в разреженных посевах создаются более благоприятные условия, чем в загущённых, что отражается на увеличении массы одного растения и формировании более крупных метёлок. Однако наиболее высокий урожай зелёной массы был получен при увеличении густоты стояния до 70 тыс. раст. на 1 га, что подтверждается данными таблицы 2.

2. Урожайность зелёной массы отавы сорго в зависимости от густоты стояния растений (среднее за 2013—2015 гг.)

Густота	Урожай	Сбор с 1 га, т		
стояния, тыс. раст. на 1 га	зелёной массы, ц/га	кормовых единиц	переваримого протеина	
40	21,8	9,3	0,40	
50	24,6	10,4	1,44	
60	28,3	12,0	0,51	
70	31,6	13,4	0,57	
80	28,7	12,2	0,52	

Как видно по данным таблицы 2, наибольший выход зелёной массы был получен на варианте опыта с густотой 70 тыс/га и составил 31,6 т/га, а наименьшее её количество получено при густоте стояния растений 40 тыс/га — 21,8 т.

Аналогичная закономерность наблюдалась и по сбору кормовых единиц и переваримого протеина.

Вывод. Оптимальной густотой стояния сорго сорта Марджона для выращивания на зерно и

зелёную массу в условиях Дангаринского массива Хатлонской области Таджикистана можно считать 70 тыс. раст. на 1 га.

Литература

- 1. Вохидов А.П. Продуктивность кормового поля при выращивании совместных посевов по зяби и после промежуточных культур // Кишоварз, Земледелец. 2009. № 4 (44). С. 3–6.
- С. 3—0.
 Норов М.С., Миралиев Д. Продуктивность кукурузы повторного посева и отавы сорго в условиях орошения Дангаринского массива Таджикистана // Известия Оренбургского государственного аграрного университета. 2017. № 4 (66). С. 68—71.
- 3. Каравайцев Я.А. Оптимальные нормы высева сахарного и зернового сорго в степной зоне Оренбургского Предуралья // Известия Оренбургского государственного аграрного университета. 2016. № 4 (60). С. 49–51.

- Перевойко Ж.А., Косилов В.И. Воспроизводительная способность свиноматок крупной белой породы и её двух-трёхпородных помесей // Известия Оренбургского государственного аграрного университета. 2014. № 6 (50). С. 161–163
- Гадиев Р.Р., Косилов В.И., Папуша А.В.Продуктивные качества двух типов чёрного африканского страуса // Известия Оренбургского государственного аграрного университета. 2015. № 1 (51). С. 122–125.
- от густоты стояния в чистых и совместных посевах с кукурузой в условиях орошения Гиссарской долины Таджикистана // автореф. дисс. ... канд. с.-х.наук. Душанбе, 1986. 18 с. 7. Давлатов С.Х. Продуктивность различных сортов сорго

6. Норов М.С. Продуктивность зернового сорго в зависимости

- Давлатов С.Х. Продуктивность различных сортов сорго и суданской травы в орошаемых землях Юго-Западного Таджикистана // Кишоварз, Земледелец. 2015. № 1 (65). С. 16–18.
- 8. Методика полевых опытов с кормовыми культурами. М., 1971. 158 с.