Продуктивность нута в зависимости от минеральных удобрений и биопрепаратов и изучение накопления азота в органах растения методом изотопной индикации*

А.С. Тлепов, к.с.-х.н., **Р.Ш. Джапаров**, к.с.-х.н., **Е.Б. Ахметов**, магистр, Западно-Казахстанский АТУ

Для засушливых регионов большой интерес представляет ценная однолетняя зернобобовая культура нут. При наличии скороспелых сортов

он может с успехом возделываться в Западно-Казахстанской области и на приграничных с нею территориях.

Нут — ценная продовольственная и кормовая культура, обладающая самой высокой питательной ценностью среди зернобобовых. Нут хорошо пере-

^{*} Исследование выполнено в рамках программы грантового финансирования Комитета науки Министерства науки и образования Республики Казахстан по проекту «Изучение трансформации азота минеральных удобрений на зернобобовой культуре *Cicer arietinum* методом изотопной индикации» (№ госрегистрации 0115PK01771)

носит засуху, устойчив к болезням и вредителям. Его возделывание в регионе является одним из перспективных направлений сельскохозяйственной отрасли в обеспечении продовольственного снабжения населения, повышении продуктивности животноводства.

В современных условиях необходима более точная оценка интенсивности и направленности процессов трансформации азота в системе почва — растение. Крайне необходимо установить реальные размеры использования сельскохозяйственными культурами азота удобрений. Необходимо определить размеры симбиотической фиксации азота при возделывании бобовых культур. Практически отсутствуют данные о процессах иммобилизации (закреплении) азота удобрений в почве в условиях сухостепной зоны Казахстана. Не установлены размеры потерь азота из почвы.

Изучение процесса трансформации азота удобрений в почве и поступление его в растения является вопросом, который интересует учёных всего мирового сообщества. Так, в Китае проводят многолетние исследования по изучению увеличения валового коэффициента трансформации азота и поглощения азота на рисовых полях [1, 2]. Учёные из США используют метод изотопной индикации для определения количественного поглощения ¹⁵N и оценки его удерживания в тканях биоты [3]. Французские учёные изучали динамику цикла азота почвы и бассейнов углерода после преобразования земель из луговых в пахотные и обратно, а также риски потерь азота от преобразования таких систем [4, 5].

Ранее проведённые учёными Западно-Казахстанского аграрно-технического университета исследования на яровой пшенице с применением стабильного изотопа ¹⁵N позволили уточнить потребление азота минеральных удобрений культурой, закрепления его в почве и учесть газообразные потери азота [6, 7].

Применяя в качестве источника азота для растений сульфат аммония, аммиачную селитру и любые другие соединения азота, обогащённые изотопом ¹⁵N, и определяя затем содержание изотопа ¹⁵N в выделенных из растения соединениях азота, можно совершенно однозначно ответить на вопрос о том, как быстро поступает азот в тот или иной орган растения, с какой скоростью и в каких органах и тканях растений образуются интересующие нас азотистые органические соединения и какова их дальнейшая судьба в растениях. При этом весьма важным является то обстоятельство, что изотоп азота ¹⁵N по своему действию на живой организм в любой концентрации ничем не отличается от обычного азота. При использовании наиболее обогащённых изотопом ¹⁵N аммонийных или азотнокислых солей они будут оказывать на растения в точности такое же действие, как и обычные аммонийные или азотнокислые соли. Никакого токсического или, наоборот, стимулирующего влияния на растения и на животных изотоп 15 N не оказывает [8].

Изучение проблемы применения микробных препаратов при выращивании зернобобовых культур в Западно-Казахстанском регионе представляет большой интерес, расширяет представление об азотфиксации в зависимости от почвенно-климатических условий [9].

Материал и методы исследования. Исследование проводили в 2015—2017 гг. в условиях вегетационно-полевого опыта (сосуды без дна площадью 0,13 м²) гг. на тёмно-каштановой тяжелосуглинистой почве опытного участка ЗКАТУ им. Жангир хана. Закладку опыта и математическую обработку данных проводили по Б.А. Доспехову (1985), применение изотопа азота ¹⁵N в опыте — по Д.А. Коренькову [10].

Объектом исследования был нут сорта Краснокутский 36. Норма высева составляла 900 тыс. семян на 1 га. Изучали эффективность применения двух микробных препаратов — Флавобактерина и Ризоторфина, а также минеральных удобрений — аммиачной селитры (обогащённой стабильным изотопом ¹⁵N), двойного суперфосфата и 60-процентной калийной соли.

Азотные удобрения вносили в дозе 1,15 г/сосуд (из расчёта 3 г/м²), что соответствует 30 кг/га д.в. (N_{30}). В качестве фона использовали двойной суперфосфат и калийную соль в дозах, эквивалентных 30 кг/га д.в. ($P_{30}K_{30}$). Повторность опыта — шестикратная.

Ризоторфин — инокулянт, для семян нута необходим для увеличения размеров симбиотической фиксации азота, создан на основе эффективных штаммов клубеньковых бактерий *Mesorhizobium ciceri*. Флавобактерин — препарат антифунгального или антигрибного действия, в состав которого входит новый штамм бактерий из рода *Pseudomonas*.

Схема опыта включала восемь вариантов, в том числе семь вариантов с применением вышеуказанных препаратов: I — контрольный (без использования препаратов); II — фон P_{30} + K_{30} ; III — фон + N_{30} ; IV — фон + Ризоторфин; V — фон + Ризоторфин + N_{30} ; VI — фон + Флавобактерин; VII — фон + Флавобактерин + V_{30} ; VIII — Фон + Ризоторфин + Флавобактерин + V_{30} .

Результаты исследования. Содержание гумуса почвы опытного участка соответствует типам и подтипам тёмно-каштановой почвы Западно-Казахстанской области и составляет 3,19% в слое 0-30 см. Содержание общего азота в слое 0-30 см составляет 0,13% по профилю, подвижного фосфора -1,2 мг/100 г почвы (степень обеспеченности низкая), обменного калия -19,4 мг/100 г (степень обеспеченности низкая).

Бобовая культура нут характеризуется потенциальной урожайностью до 1,5—2,0 т/га. Реальный сбор зерна зависит от ряда факторов, среди которых особое значение имеют обеспеченность

растений влагой, плодородие почвы, сортовые семена, внесение удобрений и инокуляция семян биопрепаратами.

Урожайность культуры по годам характеризовалась одинаковой зависимостью от использования средств химизации и биологизации в земледелии (рис.).

В среднем за годы исследования урожайность нута была в интервале от 0.74 т/га на контрольном варианте до 1.12 т/га на вариантах с использованием минеральных удобрений и биопрепаратов (табл. 1).

Увеличение урожайности зернобобовой культуры связано с изменением условий минерального питания растений за счёт внесения удобрений и применения микробных биопрепаратов. Улучшение фосфорного и калийного питания растений в результате внесения одноименных минеральных удобрений обеспечило получение достоверной прибавки урожайности зерна на 21,6%. Внесение полного минерального удобрения (азота, фосфора и калия) способствовало дальнейшему росту прибавки от азота, которая составила 35,1%.

Инокуляция семян нута биопрепаратом Ризоторфин, созданном на основе активных штаммов ризобактерий *Mesorhizobium ciceri*, способствующих увеличению симбиотической азотфиксации, досто-

верно увеличила урожайность зерна относительно фона $P_{30}K_{30}$ на 0,10 т/га (11,1%). Посев семян, обработанных Ризоторфином, на фоне с внесением полного минерального удобрения увеличил сбор зерна по отношению к контролю на 0,34 т/га, или на 45,9%, при этом эффект от азотного удобрения составил 0,08 т/га (8,0%), прибавка от биопрепарата была аналогичной. Оценка эффективности инокуляции семян нута Флавобактерином, относящимся к группе препаратов комплексного действия, так же показала положительное его действие на урожайность зерна изучаемой бобовой культуры. За счёт инокуляции семян нута Флавобактерином прибавка зерна составила 5,6% на фоне $P_{30}K_{30}$ и 7,0% — на фоне полного минерального удобрения.

Сравнивая действие изучаемых препаратов, следует подчеркнуть, что наиболее эффективно себя проявил Ризоторфин, показав достоверную прибавку — 35,1%. При комплексном использовании средств химизации и биологизации (биопрепараты Ризоторфин + Флавобактерин) урожайность зерна нута выросла на 0,38 т/га, или на 51,4%. От бинарного использования биопрепаратов рост урожайности зерна нута увеличился на 0,12 т/га, или на 12,0% по сравнению с внесением полного минерального удобрения.

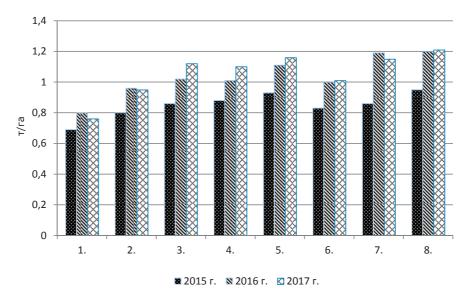


Рис. - Урожайность нута за годы исследований

1. Урожайность нута, среднее за 2015-2017 гг.

Вариант Урожайность,		Прибавка к контролю			бавка удобрения	Прибавка от биопрепарата		
	1/1 a	т/га	%	т/га	%	т/га	%	
I	0,74	_	_	_	_	_	_	
II	0,90	0,16	21,6	_	_	_	_	
III	1,00	0,26	35,1	0,10	11,1		_	
IV	1,00	0,26	35,1	_	_	0,10	11,1	
V	1,08	0,34	45,9	0,08	8,0	0,08	8,0	
VI	0,95	0,21	28,4	_	_	0,05	5,6	
VII	1,07	0,33	44,6	0,12	12,0	0,07	7,0	
VIII	1,12	0,38	51,4	_	_	0,12	12,0	
HCP_{05}	0,02	_	_	_	_	_	_	

Изучение динамики накопления биомассы в период вегетации выявило влияние удобрений и биопрепаратов на рост растений, которое начинает проявляться уже в фазу всходов и наблюдается до полной спелости (табл. 2). В фазу всходов за счёт влияния изучаемых факторов масса растений увеличилась от 1,64 до 2,48 г/сосуд, т.е. отчётливо проявилось положительное действие удобрений и биопрепаратов. В фазу бутонизации нута масса растений изменялась от 6,54 до 13,15 г/сосуд. Максимальное действие получено от Ризоторфина на фоне удобрений и при бинарной инокуляции семян биопрепаратами.

К фазе цветения произошло дальнейшее увеличение массы нута. При использовании минеральных удобрений и биопрепаратов масса растений увеличивалась с 8,3 (контроль) до 17,0 г/сосуд. Наиболее положительное действие изучаемых факторов получено от комплексного их использования. Улучшение условий минерального питания растений положительно отразилось на нуте и в фазу полной спелости. В эту фазу масса зерна изменилась от 7,3 до 11,6 г/сосуд, соломы — от 12,6 до 17,7 г/сосуд, створок бобов — от 2,2 до 3,1 г/сосуд, общая биомасса — от 22 до 32 г/сосуд. Все элементы структуры урожая нута увеличивались от использования полного минерального удобрения и от инокуляции семян биопрепаратами.

Применение меченого азота позволило достоверно установить использование его растениями на формирование урожая, закрепление в почве и потери (табл. 3). На формирование урожая использовалось 37–41% от внесённого количества минерального удобрения, 35–41% закрепилось в почве и 18–26% составили неучтённые потери,

относящиеся преимущественно к газообразным. Изучаемые биопрепараты практически не влияли на использование азота удобрения для формирования урожая (37–41%), однако Ризоторфин и совместное его применение с Флавобактерином повышали закрепление азота в почве и снижали его газообразные потери.

При использовании под нут азотного удобрения и применения биопрепаратов важно определить, за счёт каких его источников формируется урожай. С помощью меченого азотного удобрения (табл. 4) удалось установить долю азота почвы, азота удобрения и экстра-азота (дополнительная минерализация почвенного азота при внесении азотных удобрений). При внесении только минеральных удобрений урожайность нута формировалась на 65% за счёт азота почвы, за счёт азота удобрений – на 12,7% и на 18% — за счёт азота биологического, на долю экстра-азота приходилось около 4,2%. При использовании биопрепаратов снижалась доля азота почвы до 58-60% и азота удобрения - до 11-12%, но возрастала доля симбиотического азота до 28% на вариантах с Ризоторфином, содержащим клубеньковые бактерии. Доля экстра-азота на вариантах с Ризоторфином не возрастала, но увеличивалась при инокуляции Флавобактерином.

Анализ динамики и структуры потребления нутом азота удобрений и азота почвы в период вегетации свидетельствует о том, что в начальную фазу (всходы) максимальное количество меченого азота удобрения закрепляется в почве. За счёт потребления азота в период формирования биомассы снижается его закрепление в почве, увеличивается накопление в урожае и возрастают неучтённые потери от 4—8 до 20—28%.

о II		U	U	1		,
- / Динами	ка накопления	сухои массь	г пастении по	ว เกลรลพา	вегетации нута.	г/сосул

	Всходы	Буто- низация	Цве- тение	Полная спелость				
Вариант	(3 лист)			зерно	солома	створки бобов	всего	
I – контрольный	1,64	6,54	8,31	7,30	12,58	2,18	22,06	
$II - P_{30}K_{30} - фон$	2,15	8,00	10,85	9,15	13,88	2,94	25,97	
$III - P_{30}K_{30} + N_{30}$	2,28	10,15	13,54	10,77	15,92	3,07	29,76	
$IV - P_{30}K_{30} + Ризоторфин$	2,20	12,46	14,38	10,62	15,83	2,89	29,35	
$V - P_{30}K_{30} + $ Ризоторфин $+ N_{30}$	2,41	13,15	15,77	11,08	17,27	3,15	31,51	
$VI - P_{30}K_{30} + \Phi$ лавобактерин	2,21	12,69	16,08	9,69	17,16	2,81	29,66	
$VII - P_{30}K_{30} + \Phi$ лавобактерин + N_{30}	2,48	11,69	16,46	11,08	17,58	2,83	31,49	
$VIII - P_{30}K_{30} + Ризоторфин +$								
Флавобактерин + N ₃₀	2,27	12,92	17,00	11,62	17,73	3,08	32,43	
HCP ₀₅	0,06	0,71	1,01	0,49	1,01	0,12	1,25	

3. Использование азота удобрений ¹⁵N на формирование урожая нута

Вариант		о растениями брений	F	сь в почве брений	Неучтённые потери ¹⁵ N удобрений		
	мг/сосуд	%	мг/сосуд	%	мг/сосуд	%	
$P_{30}K_{30} + N_{30}$	110	39	98	35	73	26	
$P_{30}K_{30} + P$ изоторфин + N_{30}	104	37	107	38	70	25	
$P_{30}K_{30} + \Phi$ лавобактерин + N_{30}	107	38	104	37	70	25	
$P_{30}K_{30} + Ризоторфин +$	115	41	115	41	51	18	
Флавобактерин + N ₃₀							

4. Доля источников азота в формировании урожая зерна нута сорта Краснокутский 36
на тёмно-каштановой тяжелосуглинистой почве

Downsor	Вынос N урожаем		N почвы		N удобрения		Симбио- тический азот		Экстра- азот	
Вариант	мг/ сосуд	%	мг/ сосуд	%	мг/ сосуд	%	мг/ сосуд.	%	мг/ сосуд	%
$P_{30}K_{30} + N_{30}$	865	100	562	65,0	110	12,7	156	18	37	4,2
$P_{30}K_{30} + P$ изоторфин + N_{30}	933	100	562	60,2	104	11,1	261	28	6	0,6
$P_{30}K_{30} + \Phi$ лавобактерин + N_{30}	956	100	562	58,8	107	11,2	191	20	96	10,0
$P_{30}K_{30} + Ризоторфин +$	970	100	562	57,9	115	11,9	281	29	12	1,2
Флавобактерин + N ₃₀										

5. Использование азота удобрений 15 N на формирование урожая нута, % (среднее за 2015-2017 гг.)

Вариант	Использовано растениями	Закрепилось в почве	Неучтённые потери
$P_{30}K_{30} + N_{30}$	33	36	31
$P_{30}K_{30} + P$ изоторфин + N_{30}	32	40	28
$P_{30}K_{30} + \Phi$ лавобактерин + N_{30}	32	39	29
$P_{30}K_{30}$ + Ризоторфин + Флавобактерин + N_{30}	35	43	22

6. Доля источников азота в формировании урожая зерна нута сорта Краснокутский 36 на тёмно-каштановой тяжелосуглинистой почве, % (среднее за 2015–2017 гг.)

Вариант	Вынос урожаем	N почвы	N удоб- рения	Симбиоти- ческий азот	Экстра- азот
$P_{30}K_{30} + N_{30}$	100	59	13	18	11
$P_{30}K_{30} + Ризоторфин + N_{30}$	100	53	11	22	13
$P_{30}K_{30} + \Phi$ лавобактерин + N_{30}	100	51	11	18	20
$P_{30}K_{30}$ + Ризоторфин + Флавобактерин + N_{30}	100	50	12	25	13

Применение для инокуляции семян нута Ризоторфина и Флавобактерина практически не изменяет использование растениями азота удобрения на формирование урожая. Ризоторфин и бинарное применение биопрепаратов повышают от 34 до 39–41% закрепление азота удобрения в почве и снижают от 28 до 20–25% газообразные потери. Флавобактерин фактически не влияет на закрепление азота в почве и потери азота удобрения.

В таблице 5 представлены данные об использовании растениями нута азота удобрения на формирование урожая (надземная биомасса в фазу полной спелости). Показано, что коэффициент использования растениями азота удобрения составлял 33—35%. Большая его часть закрепилась в почве — 36—43%, на неучтённые потери приходилось 22—31%. Максимальные потери азота удобрения произошли при внесении удобрения на фоне РК-удобрений, использование биопрепаратов снижает их до 22%.

Основным источником формирования урожая нута является азот почвы, доля которого достигает 50—59% от общего выноса (табл. 6).

При внесении азотного удобрения 11-13% от общего выноса азота урожаем приходится на азот применяемых удобрений, а при использовании биопрепаратов, особенно симбиотического Ризоторфина, доля биологического азота достигает 20-25%. При этом в результате бинарной инокуляции доля

биологического азота достигает максимального значения. Связано это с тем, что в результате инокуляции семян на корнях образуются клубеньковые бактерии, обеспечивающие вовлечение в агроценоз симбиотически связанного азота.

Выводы. Урожайность зерна нута в результате внесения минеральных удобрений и биопрепаратов возрастает на 22-51%. Прибавки от азотного удобрения составляют 8-12%, от биопрепаратов -6-12%, т.е. положительная роль средств химизации и биологизации является равноценной. При комплексном использовании азотного удобрения и биопрепаратов Ризоторфин или Флавобактерин урожайность зерна нута возрастает на 45-46%, а от бинарной инокуляции этими биопрепаратами — на 51%. На фоне без азотного удобрения ($P_{30}K_{30}$) эффект от применения Ризоторфина равен 35%, Флавобактерина — чуть меньше — 28%.

Исходя из вышеотмеченного можно констатировать, что для получения урожайности зерна нута порядка 1 т/га возможно внесение на фоне $P_{30}K_{30}$ азотного удобрения в дозе 30 кг/га, или использование для инокуляции семян биопрепаратов Ризоторфин или Флавобактерин, а также возможно использование предпосевной бинарной инокуляции семян этими препаратами.

Растения нута используют 32—35% азота от внесённой дозы удобрения на формирование урожая. Максимальный коэффициент использования азота

получен при бинарной инокуляции семян Ризоторфином и Флавобактерином, отдельная инокуляция семян этими биопрепаратами обеспечивает тенденцию снижения коэффициента использования азота растениями на формирование урожая.

Биопрепараты повышают закрепление в почве азота удобрений от 35 до 39—43% от внесённой дозы удобрения. Максимальное закрепление в почве азота происходит при бинарной инокуляции семян. В этом же варианте наблюдаются минимальные неучтённые потери азота удобрений, что связано с увеличением использования его на формирование урожая и большей закреплённостью в почве, что, несомненно, является положительным фактом с экологической точки зрения.

Литература

- Chen Z.Z., Zhang J.B., Xiong Z.Q., Pan G.X., Muller C. Enhanced gross nitrogen transformation rates and nitrogen supply in paddy field under elevated atmospheric carbon dioxide and temperature // Soil Biology & Biochemistry. 2016. Mar. T. 94. C. 80–87.
- 2. Dou Y., Howard K.W.F., Qian H. Transport Characteristics of Nitrite in a Shallow Sedimentary Aquifer in Northwest China as Determined by a 12-Day Soil Column Experiment // Exposure and Health. 2016. Sep. T. 8. № 3. C. 381–387.

- Ballentine M.L., Ariyarathna T., Smith R.W., Cooper C., Viahos P., Fallis S., Groshens T.J., Tobias C. Uptake and fate of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coastal marine biota determined using a stable isotopic tracer, N-15 – RDX // Chemosphere. 2016. Jun. T. 153. C. 28–38.
- 4. Attard E., Le Roux X., Charrier X., Delfosse O., Guillaumaud N., Lemaire G., Recous S. Delayed and asymmetric responses of soil C pools and N fluxes to grassland/cropland conversions // Soil Biology & Biochemistry. 2016. Jun. T. 97. C. 31–39.
- Huppi R., Neftel A., Lehmann M. F., Krauss M., Six J., Leifeld J. N use efficiencies and N₂O emissions in two contrasting, biochar amended soils under winter wheat-cover crop-sorghum rotation // Environmental Research Letters. 2016. Aug. T. 11. № 8.
- 6. Сергалиев Н.Х., Володин М.А., Джапаров Р.Ш. Эффективность азотных удобрений при возделывании яровой пшеницы на тёмно-каштановой почве Западного Казахстана // Новости науки Казахстана. 2013. № 3. С. 135—139.
- Изучение трансформации азота минеральных удобрений методом изотопной индикации с применением стабильного изотопа ¹⁵N: отчёт о НИР (промежуточ) / Зап.-Казахст. аграр.-технич. ун-т: рук. Н.Х. Сергалиев; исполн.: М.А. Володин. Уральск, 2012. 42 с. № ГР 0112PK00516. Инв. № 0212PK01666.
- 8. Турчин Ф.М. Азотное питание растений и применение азотных удобрений. М.: Изд-во «Колос», 1972. 338 с.
- Посыпанов Г.С. Азотфиксация бобовых культур в зависимости от почвенно-климатических условий // Минеральный и биологический азот в земледелии СССР. М.: Наука (АН СССР), 1985. 16 с.
- 10. Кореньков Д.А. Методы применения изотопа азота 15 N в агрохимии. М.: Изд-во «Колос», 1977. 158 с.