Показатели крови коров чёрно-пёстрой породы при потреблении энергетического кормового комплекса Фелуцен

3.Р. Халирахманов, аспирант, **И.В. Миронова**, д.б.н., ФГБОУ ВО Башкирский ГАУ; **Р.Р. Сайфуллин**, к.с.-х.н., ФКУ НИИ ФСИН России

Создание оптимальных условий для обеспечения населения страны высококачественными продуктами питания является важнейшей задачей работников агропромышленного комплекса России [1-3].

Молочная продуктивность коров связана с обменными процессами, протекающими в организме, где кровь является внутренней средой, отображающей все изменения, происходящие в нём. В период

лактации в организме коров интенсивно идут биохимические процессы обмена веществ, связанные с трансформацией значительного количества энергии и питательных веществ корма в молоко. В этот период животные особенно нуждаются в организации полноценного и сбалансированного кормления [3, 4].

В современных условиях сложно реализовать генетический потенциал стада и достичь высоких удоев без использования специальных кормовых добавок [4—6].

Перспективным сегментом рынка является введение энергетических кормов, необходимых для

поддержания в наиболее напряжённые периоды энергетического баланса высокопродуктивных коров [7, 8].

Энергетический кормовой комплекс Фелуцен применяется для балансирования рационов крупного рогатого скота по минеральным и витаминным компонентам на основе любой кормовой базы. Его вводят к основному рациону коров, быков и нетелей в виде гранул. В состав комплекса входят растительные протеины и жиры, легкоферментируемые углеводы, аминокислоты (лизин, метионин, цистин), хлорид натрия высокой очистки, макроэлементы — кальций, фосфор, сера, магний, микроэлементы — медь, цинк, марганец, кобальт, йод, селен, витамины — А, D₃, Е. Не содержит антибиотиков, пальмового масла, гормональных препаратов и ГМО [9].

В нашем опыте комплекс Фелуцен вводился в рацион в сухом виде, для чего гранулы перемешивали с зерновой смесью. Особенностью его использования является исключение из основного рациона кормления коров соли.

Цель исследования — оценка эффективности использования энергетического кормового комплекса Фелуцен в кормлении коров чёрно-пёстрой породы и влияния на морфологический и биохимический статус крови. Для достижения цели решались следующие задачи: изучить динамику морфологических и биохимических показателей коров в начале, середине и в конце опыта.

Материал и методы исследования. Опыт проведён в условиях Чекмагушевского района Республики Башкортостан в период 2016—2017 гг. на коровах чёрно-пёстрой породы 5—6-летнего возраста. Для этого методом групп-аналогов было сформировано четыре группы коров по 12 гол. в каждой. Животные контрольной группы получали основной рацион, а в рацион коров опытных групп (I, II, III) вносили энергетический кормовой комплекс Фелуцен из расчёта 250, 300 и 350 г на одно животное в сутки.

У животных в начале, в середине и в конце опыта брали кровь на анализ. Кровь исследовали на автоматическом гематологическом анализаторе, позволяющем определить количество эритроцитов,

лейкоцитов и гемоглобина. В сыворотке крови определяли количество общего белка и его фракций.

Результаты исследования. Анализ динамики изменения гематологических показателей при испытании энергетического кормового комплекса Фелуцен имеет большое значение, поскольку течение обменных процессов прежде всего отражается в изменении состояния крови.

В ходе исследования получены следующие результаты. После применения экспериментального энергетического препарата Фелуцен у животных не отмечалось негативных реакций на его введение. Характер основных физиологических показателей не изменялся (табл. 1).

Известно, что эритроциты выполняют функцию снабжения тканей организма кислородом, поэтому любое нарушение эритропоэза ведёт к тяжёлым последствиям во всём организме. Лейкоциты занимают одно из важных мест в оценке физиологического состояния организма животных, его резистентности и иммунобиологической реактивности. Клетки белой крови выполняют транспортную, антитоксическую функции, а также участвуют в защитных реакциях организма, тем самым помогая ему противостоять неблагоприятным факторам внешней и внутренней среды. Они способны синтезировать гамма-глобулины, специфические иммуноглобулины и антитела, поглощать и уничтожать микробные клетки, транспортировать к клеткам тканей питательные вещества, инактивировать токсины и пр. [10].

Анализ полученных нами данных свидетельствует, что в начале опыта животные всех сравниваемых групп имели схожие морфологические показатели крови. Включение в состав рациона разных дозировок энергетического кормового комплекса Фелуцен способствовало изменению картины в сторону увеличения концентрации эритроцитов и гемоглобина и снижению лейкоцитов на протяжении всего периода хозяйственного опыта.

Так, к середине опыта количество эритроцитов в крови коров контрольной группы увеличилось на $0.26 \cdot 10^{12}/\pi$ (4,90%), І опытной — на $0.39 \cdot 10^{12}/\pi$ (7,34%), ІІ опытной — на $0.68 \cdot 10^{12}/\pi$ (12,81%) и ІІІ

1. Морфологический состав крови коров	$(X\pm Sx)$	(X
---------------------------------------	-------------	----

		Группа			
Показатель	Этап опыта	контрольная	опытная		
			I	II	III
	начало	9,06±0,09			
Лейкоциты, 10 ⁹ /л	середина	8,65±0,17	8,31±0,11	8,03±0,14*	8,13±0,11*
	конец	8,06±0,08	7,65±0,23	7,35±0,30*	7,37±0,29*
Эритроциты, 1012/л	начало	5,31±0,12			
	середина	5,57±0,09	5,70±0,20	5,99±0,12*	5,93±0,03*
	конец	5,80±0,14	6,35±0,21*	6,47±0,20*	6,45±0,21*
Гемоглобин, г/л	начало	109,27±1,68			
	середина	111,70±4,35	117,96±4,36	123,33±3,56*	122,86±1,79*
	конец	114,94±1,22	124,43±2,48**	127,81±2,36**	126,19±2,63**

опытной — на $0.62 \cdot 10^{12}/\pi$ (11,68%), гемоглобина — на 2.43 (2,22%); 8.69 (7,95%); 14.06 (12,87%) и 13.59 г/л (12,44%) соответственно. К концу наблюдений по сравнению с начальным этапом содержание эритроцитов повысилось в крови коров контрольной группы на $0.49 \cdot 10^{12}/\pi$ (9,23%), І, ІІ и ІІІ опытных групп — соответственно на 1.04 (19,59%); 1.16 (21,85%) и $1.14 \cdot 10^9/\pi$ (21,47%), гемоглобина — соответственно на 5.67 (5,19%); 15.16 (13,87%); 18.54 (16,97%) и 16.92 г/л (15,48%).

Противоположная картина установлена по содержанию лейкоцитов. Так, к середине опыта содержание лейкоцитов снизилось в крови коров контрольной группы на $0.41 \cdot 10^9/\pi$ (4,74%), к концу по сравнению с начальным этапом на $1.00 \cdot 10^9/\pi$ (12,41%), I, II и III опытных групп — соответственно на 0.75 (9,02%); 1.03 (12,83%) и $0.93 \cdot 10^9/\pi$ (11,44%), а к концу опыта — соответственно на 1.41 (18,43%); 1.71 (23,27%) и $1.69 \cdot 10^9/\pi$ (22,93%).

Наибольшая концентрация эритроцитов и гемоглобина отмечалась в крови коров, потребляющих энергетический кормовой комплекс Фелуцен. Так, в середине опыта превосходство коров опытных групп над контрольными сверстницами по содержанию эритроцитов в крови составляло $0,13-0,42\cdot10^{12}/\pi$ (2,33-7,54%; P<0,05), в конце — на $0,55-0,67\cdot10^{12}/\pi$ (9,48-11,55%; P<0,05), гемоглобина — на 6,26-11,63 г/л (5,60-10,41%; P<0,05) и 9,49-12,87 г/л (8,26-11,20%; P<0,01) соответственно.

Повышенная концентрация гемоглобина в нормативном пределе является положительным физиологическим показателем, характеризующим высокий уровень обменных процессов, происходящих в организме животных, что обусловлено прямой связью морфологических показателей крови с продуктивностью.

Следует отметить, что наибольшая концентрация эритроцитов и гемоглобина выявлена в крови

коров, потреблявших энергетический комплекс в дозе 300 г на 1 животное в сутки.

Увеличение концентрации гемоглобина в крови коров опытных групп объясняется наличием в энергетическом кормовом комплексе Фелуцен солей металлов меди, марганца, кобальта и цинка, которые участвуют в его образовании и кроветворении, что положительно сказывается на состоянии организма животных в целом. Одновременное увеличение количества эритроцитов и содержания гемоглобина в крови свидетельствует об усилении гемопоэза в крови и костном мозге.

Оперативным индикатором, характеризующим поступление доступных питательных веществ в организм, является биохимический контроль крови коров. Действие различных дозировок комплекса Фелуцен способствовало изменению биохимических показателей сыворотки крови коров в пределах физиологических норм (табл. 2).

Известно, что белок сыворотки крови представляет собой смесь разных структур и функций молекул в определённом соотношении. В основном это альбумины и глобулины. Определение белков осуществляют многими способами, но чаще всего методом электрофореза. В основе лежит разная скорость движения молекул в электрическом поле, которая зависит от размера и структуры молекулы [10].

Для выявления недостатка протеина в рационе определяется концентрация альбуминов в сыворотке крови. Эти белки в процессе гидролиза используются для синтеза специфических белков тканей, их считают аминокислотным резервом организма [9].

Нами установлено, что наибольшее содержание альбуминов отмечалось в сыворотке крови коров опытных групп. Так, коровы I-III опытных гр. превосходили контрольных сверстниц по величине анализируемого показателя в середине опыта на 0,10-1,52%, в конце — на 0,26-0,55%.

 Соот 	ношение	белковых	фракций,	%	$(X \pm Sx)$)
--------------------------	---------	----------	----------	---	--------------	---

		Группа			
Показатель	Этап опыта	контрольная	опытная		
			I	II	III
Альбумины	начало	45,64±0,44			
	середина конец	45,96±0,37 47,13±0,76	46,06±1,00 47,39±0,66	47,48±0,70 47,68±0,88	47,19±1,00 47,53±0,79
Глобулины	начало	54,36±0,44			
	середина конец	54,04±0,37 52,87±0,76	53,94±1,00 52,61±0,66	52,52±0,70 52,32±0,88	52,81±1,00 52,47±0,79
В том числе: α-глобулин	начало	13,40±0,019			
	середина конец	13,43±0,33 13,90±0,18	13,79±0,27 13,98±0,30	13,94±0,34 13,99±0,18	13,91±0,13 13,99±0,17
	начало	16,79±0,10			
β-глобулин	середина конец	16,85±0,37 18,19±0,19	17,88±0,35 18,23±0,51	17,93±0,81 18,31±0,14	17,92±0,54 18,21±0,22
ү-глобулин	начало	24,17±0,30			
	середина конец	23,76±0,80 20,79±0,83	22,28±1,61 20,40±0,98	20,66±1,00 20,02±1,18	20,98±0,56 20,27±1,11

Следует отметить, что с возрастом содержание альбуминов имело тенденцию к увеличению. Так, к середине наблюдений данный показатель увеличился у коров контрольной группы на 0,32%, к концу опыта — на 1,49%, опытных — на 0,42-1,84% и 1,75-2,04% соответственно.

Другой значительной группой белков сыворотки крови являются глобулины, которые участвуют в переносе железа, кальция, холестерина, лецитина, токоферола и др. [8].

По глобулинам картина была противоположной. Так, снижение величины данного показателя к середине опыта у коров контрольной группы составляло 0.32%, к концу — на 1.49%, I опытной — на 0.42 и 1.75%; II опытной — на 1.84 и 2.04% и III опытной — на 1.89% соответственно.

Соотношение между белковыми фракциями в сыворотке крови у подопытных коров колебалось в определённых пределах. Так, содержание белковых фракций, относящихся к группе у-глобулинов, как защитной фракции белка, находилось в середине опыта в диапазоне 20.66-23.76%, в конце -20.02-20.79% и характеризовалось оптимальным соотношением. Примечательно, что значение данного показателя с возрастом снижалось. К завершающему этапу наблюдений снижение у-глобулинов в сыворотке крови коров контрольной группы составляло 3.38%, опытных -3.77-4.15%. При межгрупповом анализе установлено лидерство коров контрольной группы над опытными сверстницами в середине опыта на 1,48-3,10%, к концу — на 0.39-0.77% соответственно.

Содержание α - и β -фракций глобулинов в сыворотке коров контрольной и опытных групп имело определённое различие. На протяжении всех этапов опыта лидировали коровы опытных групп. Достаточно отметить, что величина первого показателя у коров I–III опытных гр. была выше в середине опыта на 0,36–0,51%, в конце — на 0,08–0,09%, второго показателя — на 1,03–1,08 и 0,04–0,12% соответственно.

Следовательно, энергетический комплекс Фелуцен оказал положительное влияние как на транспорт питательных веществ (ионы кальция и магния), так и на иммунные свойства опытных животных.

Вывод. На основании данных анализа морфологического и биохимического состава крови можно сделать вывод, что энергетический кормовой комплекс Фелуцен оказал положительное влияние на исследуемые показатели, которые находились в пределах физиологических норм. Доказано, что оптимальной нормой введения энергетического кормового комплекса Фелуцен является 300 г на 1 животное в сутки.

Литература

- 1. Мироненко С.И., Косилов В.И., Жукова О.А. Особенности воспроизводительной функции тёлок и первотёлок на Южном Урале // Вестник мясного скотоводства. 2009. № 62. С. 48—56.
- 2. Косилов В.И., Миронова И.В. Влияние пробиотической коромовой добавки Ветоспорин-актив на эффективность использования энергии рационов лактирующими коровами чёрно-пёстрой породы // Вестник мясного скотоводства. 2015. № 2 (90). С. 93–98.
- Исхакова Н.Ш., Миронова И.В. Молочная продуктивность коров чёрно-пёстрой породы при использовании пробиотической добавки Биогумитель-Г // Известия Оренбургского государственного аграрного университета. 2013. № 5 (43). С. 134—136.
- 4. Комарова Н.К., Косилов В.И., Востриков Н.И. Влияние лазерного излучения на молочную продуктивность коров различного типа стрессоустойчивости // Известия Оренбургского государственного аграрного университета. 2015. № 3 (53). С. 132—134.
- Зайнуков Р., Миронова И., Тагиров Х. Влияние глауконита на молочную продуктивность первотёлок // Молочное и мясное скотоводство. 2008. № 5. С. 17–19.
- Миронова И.В., Валитова А.А., Нигматьянов А.А. Переваримость основных питательных веществ рационов коров чёрно-пёстрой породы при использовании пробиотической добавки «Ветоспорин-актив» // Состояние и перспективы увеличения производства высококачественной продукции сельского хозяйства / ФГБОУ ВПО Башкирский государственный аграрный университет. Уфа, 2014. С. 113—116.
- Миронова И.В. Изменение химического состава и свойств молока коров-первотёлок при включении в рацион добавки глауконит // Известия Самарской государственной сельскохозяйственной академии. 2013. № 1. С. 74—78.
- Зайнуков Р.С. Морфологические признаки и функциональные свойства вымени коров-первотёлок бестужевской породы при добавлении в рацион алюмосиликата глауконита/ Р.С. Зайнуков, Н.М. Губайдуллин, Х.Х. Тагиров, И.В Миронова // Известия Оренбургского государственного аграрного университета. 2008. № 2 (18). С. 73–75.
- 9. Тагиров Х.Х., Ваганов Ф.Ф., Миронова И.В. Переваримость и использование питательных веществ и энергии корма при введении в рацион пробиотической кормовой добавки «Биогумитель» // Вестник мясного скотоводства. 2012. № 3 (77). С. 79–84.
- 10. Миронова И.В., Гизатов А.Я., Гизатова Н.В. Гематологические показатели тёлок казахской белоголовой породы при использовании кормовой добавки Биодарин // Известия Оренбургского государственного аграрного университета. 2015. № 5 (55). С. 127—129.