## Особенности переваримости питательных веществ, потребления и использования энергии рационов двух- и трёхпородными помесями при использовании добавки Биодарин

**И.В. Миронова**, д.б.н., **Г.М. Долженкова**, к.с.-х.н., **Е.И. Ко- щина**, аспирантка, ФГБОУ ВО Башкирский ГАУ; **В.И. Ко- силов**, д.с.-х.н., профессор, ФГБОУ ВО Оренбургский ГАУ

Обеспечить население России полноценной животноводческой продукцией входит в список важнейших задач сельскохозяйственного производства. Быстрое увеличение производства высококачественной, экологически безопасной говядины при наименьших затратах труда и времени возможно при рациональном использовании имеющихся ресурсов, за счёт повышения мясной продуктивности молочного скота и расширения масштабов развития мясного скотоводства [1—4].

Использование генетического потенциала голштинской породы — основное средство совершенствования самой многочисленной породы молочного направления продуктивности — чёрнопёстрой. Оно способствует увеличению их молочной продуктивности в сжатые сроки. Для развития мясного скотоводства в нашей стране перспективными являются породы салерс и обрак. Изучению их продуктивных качеств, а также помесного потомства, полученного от скрещивания местных коров с быками лучшего мирового генофонда для увеличения производства говядины, посвящены труды многих учёных. В центре внимания исследователей находится и такая проблема, как влияние

отдельных веществ в составе различных добавок на обмен веществ и продуктивность животных. Это касается и добавки Биодарин [5–13].

**Цель** нашего исследования — сравнительный анализ результатов потребления и использования питательных веществ рациона двух- и трёхпородным помесным молодняком, потребляющим основной рацион, а также комплексную добавку Биодарин.

Материал и методы исследования. Опыт проводили в условиях хозяйства Республики Башкортостан. Объектом исследования являлись помесные бычки: 1/2 голштин  $\times$  1/2 чёрно-пёстрая (I и II гр.), 1/2 салерс  $\times$  1/4 голштин  $\times$  1/4 чёрно-пёстрая (III и IV гр.) и обрак  $\times$   $1/4 \times$  голштин  $\times$  1/4 чёрно-пёстрая (V и VI гр.). Из помесей было сформировано шесть групп по 10 гол. в каждой. Животные I, III и V гр. потребляли основной рацион, II, IV и VI гр. — комплексную добавку Биодарин в дозе 1,0 кг на 100 кг концентратов.

Переваримость питательных веществ рационов и энергетический обмен в организме молодняка крупного рогатого скота рассчитывали прямым методом по общепринятым методикам.

**Результаты исследования.** Проведение балансового опыта было направлено на анализ данных переваримости питательных веществ рационов помесным молодняком, что имеет важнейшее значение, поскольку способно определить физиологически заложенные возможности бычков к перевариванию и усвоению компонентов корма в зависимости от использования добавки Биодарин.

Генотип проявился при переваривающей способности питательных веществ (рис.).

Установлено, что коэффициент переваримости сухого вещества у бычков III гр. был выше, чем у аналогов I и V гр., на 1,17 и 0,43%, органического — на 0,94 и 0,40%, БЭВ — на 1,47 и 0,56%, сырого жира — на 0,22 и 0,11%, сырого протеина — на 0,59 и 0,07%, сырой клетчатки — на 0,19 и 0,25%.

У молодняка IV гр. эти показатели были выше, чем у бычков II и VI гр., соответственно на 1,43 и 0,60%; 1,31 и 0,66%; 1,39 и 1,63%; 0,42 и 0,22%; 1,87 и 0,86%; 0,83 и 0,37%.

Действие комплексной добавки Биодарин также отразилось на способности к перервариванию сухого, органического и безазотистых экстрактивных веществ, а также сырого жира, протеина и клетчатки. Помеси ІІ гр. превосходили своих аналогов из І гр. по первому показателю на 1,22, второму — на 1,02, третьему — на 1,35, четвёртому — на 1,10, пятому — на 0,69 и шестому — на 0,60%, IV гр. над аналогами ІІІ гр. — на 1,48; 1,39; 1,27; 1,30; 1,97 и 1,24%; VІ гр. над аналогами V гр. — на 1,31; 1,13; 0,20; 1,19; 1,18 и 1,12% соответственно.

Следует отметить, что генотип в большей степени влияет на переваримость питательных веществ, чем действие добавки Биодарин. Установлены групповые различия по потреблению и использованию энергии рационов (табл.).

Генотип проявился в потреблении энергии рационов. Так, помеси  $\frac{1}{2}$  голштин  $\times \frac{1}{2}$  чёрнопёстрая уступали помесным сверстникам <sup>1</sup>/<sub>2</sub> салерс  $\times$   $^{1}/_{4}$  голштин  $\times$   $^{1}/_{4}$  чёрно-пёстрая и  $^{1}/_{2}$  обрак  $\times$   $^{1}/_{4}$ голштин  $\times$   $^{1}/_{4}$  чёрно-пёстрая по потреблению валовой энергии на 6,54-8,20 МДж (4,11-5,10%) и 5,84-6,26 МДж (3,67-3,89%), переваримой – на 5,68-7,57 МДж (5,45-7,07%) и 4,63-5,19 МДж (4,44-4,85%), обменной – на 4,65-6,23 МДж (5,42-7,07%) и 3,78-4,29 МДж (4,40-4,87%), в том числе на поддержание жизни – на 2,20-2,24 МДж (5,77-5,83%) и 1,20-1,70 МДж (3,12-4,42%), на синтез продукции — на 2,45-3,99 МДж (5,13-8,03%)и 2,24—2,59 МДж (4,69—5,21%), энергии прироста на 1,05-1,69 МДж (6,52-9,92%) и 0,91-1,09 МДж (5,65-6,40%).

Бычки, получавшие в составе рациона тестируемую добавку, превосходили особей, потреблявших их основной рацион. Данная разница по двухпородным помесям по потреблению валовой

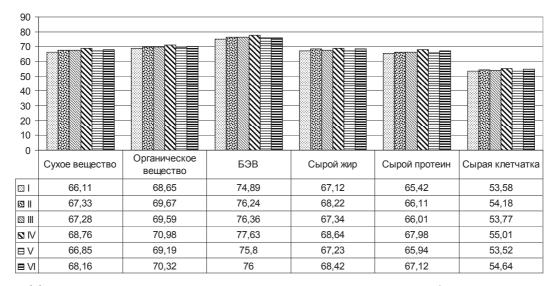



Рис. - Коэффициент переваримости питательных веществ рациона подопытных бычков, %

| Показатель                                                         |                             | Генотип, группа                                       |        |                                                                                    |        |                                                                                            |        |
|--------------------------------------------------------------------|-----------------------------|-------------------------------------------------------|--------|------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------|--------|
|                                                                    |                             | $^{1}/_{2}$ голштин $	imes$ $^{1}/_{2}$ чёрно-пёстрая |        | $^{1}/_{2}$ салерс $\times$ $^{1}/_{4}$ голштин $\times$ $^{1}/_{4}$ чёрно-пёстрая |        | $^{1/_{2}}$ обрак $\times$ $^{1/_{4}}$ $\times$ голштин $\times$ $^{1/_{4}}$ чёрно-пёстрая |        |
|                                                                    |                             | I                                                     | II     | III                                                                                | IV     | V                                                                                          | VI     |
| Энергия                                                            | валовая                     | 158,92                                                | 160,87 | 165,46                                                                             | 169,07 | 164,76                                                                                     | 167,13 |
|                                                                    | переваримая                 | 104,23                                                | 107,05 | 109,91                                                                             | 114,62 | 108,86                                                                                     | 112,24 |
|                                                                    | обменная                    | 85,85                                                 | 88,13  | 90,50                                                                              | 94,36  | 89,63                                                                                      | 92,42  |
|                                                                    | в т.ч. на поддержание жизни | 38,10                                                 | 38,44  | 40,30                                                                              | 40,68  | 39,64                                                                                      | 40,14  |
|                                                                    | на синтез продукции         | 47,75                                                 | 49,69  | 50,20                                                                              | 53,68  | 49,99                                                                                      | 52,28  |
|                                                                    | прироста                    | 16,11                                                 | 17,04  | 17,16                                                                              | 18,73  | 17,02                                                                                      | 18,13  |
| Концентрация обменной энергии в 1 кг сухого вещества               |                             | 9,64                                                  | 9,80   | 9,77                                                                               | 9,97   | 9,73                                                                                       | 9,91   |
| Коэффициент полезного использования обменной энергии (КПИ и ОЭ), % |                             | 33,74                                                 | 34,29  | 34,18                                                                              | 34,89  | 34,05                                                                                      | 34,68  |

Потребление и использование энергии рационов подопытными бычками, МДж

энергии составляла 1,95 МДж (1,23%), салерским помесям — 3,61 МДж (2,18%) и трёхпородным обракским — 2,37 МДж (1,44%), переваримой энергии — 2,82 МДж (2,71%), 4,71 МДж (4,29%) и 3,38 МДж (3,10%), обменной — на 2,28 МДж (2,66%); 3,86 МДж (4,27%) и 2,79 МДж (3,11%), в т.ч. на поддержание жизни — 0,34 МДж (0,89%); 0,38 МДж (0,94%) и 0,50 МДж (1,26%), на синтез продукции — 1,94 МДж (4,06%); 3,48 МДж (6,93%) и 2,29 МДж (5,78%), энергии прироста — 0,93 МДж (5,77%); 1,57 МДж (9,15%) и 1,11 МДж (6,52%) соответственно.

Значения концентрации обменной энергии на 1 кг сухого вещества также были выше у трёхпородных салерских помесей, потреблявших добавку Биодарин. По коэффициенту полезного использования обменной энергии трёхпородный помесный молодняк ІІІ и ІV гр. превосходил двухпородный І и ІІ гр. на 0,44 и 0,60%, трёхпородный обракский V и VI гр. — на 0,13 и 0,21%. У бычков, потреблявших тестируемую добавку, величина изучаемого показателя увеличилась по группе двухпородных помесей на 0,55%; трёхпородных — на 0,71 и 0,63%.

Таким образом, трёхпородные салерские и обракские помесные бычки лучше расходовали энергию корма на синтез продукции, чем двухпородные, с незначительной разницей между салерским и обракским генотипом в пользу первых. Результаты исследования также подтвердили положительное влияние добавки Биодарин на эти процессы.

**Вывод.** Подводя итог балансового опыта, можно констатировать, что лучше потребляли и расходовали питательные вещества бычки, получающие с кормом комплексную добавку. При этом трёхпородные помеси проявили больший потенциал, чем двухпородные особи.

## Литература

1. Бозымов К.К. Приоритетное развитие специализированного мясного скотоводства — путь к увеличению производства высококачественной говядины / К.К. Бозымов, Р.К. Абжанов, А.Б. Ахметалиева, В.И. Косилов //

- Известия Оренбургского государственного аграрного университета. 2012. № 3 (35). С. 129–131.
- Косилов В.И., Губашев Н.М., Насамбаев Е.Г. Повышение мясных качеств казахского белоголового скота путём скрещивания // Известия Оренбургского государственного аграрного университета. 2007. № 1 (13). С. 91–93.
- Мироненко С.И., Косилов В.И., Жукова О.А. Особенности воспроизводительной функции тёлок и первотёлок на Южном Урале // Вестник мясного скотоводства. 2009. Т. 2. № 62. С. 48–56.
- Мамаев И.И., Миронова И.В., Нигматьянов А.А. Пищевая, энергетическая ценность мяса бычков чёрно-пёстрой породы и её двух-, трёхпородных помесей // Вестник Башкирского государственного аграрного университета. 2014. № 1 (29). С. 50–53.
- Косилов В.И., Миронова И.В. Потребление и использование питательных веществ рационов бычками разных генотипов // Вестник мясного скотоводства. 2015. № 1 (89). С. 78–82.
- Мамаев И.И. Продуктивные качества молодняка чёрнопёстрой породы и её двух-трёхпородных помесей / И.И. Мамаев, И.В. Миронова, Г.М. Долженкова, В.И. Косилов // Известия Оренбургского государственного аграрного университета. 2017. № 1 (63). С. 128–130.
- Миронова И.В. Переваримость основных питательных веществ рационов бычков чёрно-пёстрой породы и её двухтрёхпородных помесей / И.В. Миронова, В.И. Косилов, Н.М. Губашев, Е.Г. Насамбаев // Ғылым және білім. № 2 (39). С. 12–17.
- 8. Тагиров Х.Х., Вагапов Ф.Ф., Миронова И.В. Гематологические показатели бычков чёрно-пёстрой породы при использовании пробиотической добавки «Биогумитель» // Вестник мясного скотоводства. 2012. № 4 (78). С. 60–66.
- Тагиров Х.Х. Качественные показатели молочной продуктивности при скармливании коровам пробиотика «Биогумитель-Г»/Х.Х. Тагиров, Ф.Ф. Вагапов, Н.Ш. Никулина, И.В. Миронова // Молочное и мясное скотоводство. 2014. № 8. С. 28—30.
- 2014. № 8. С. 28—30. 

  10. Миронова И.В., Губайдуллин Н.М., Исламгулова И.Н. Продуктивные качества и биоконверсия питательных веществ и энергии корма в мясную продукцию бычками-кастратами бестужевской породы при скармливании глауконита // Известия Оренбургского государственного аграрного университета. 2010. № 1 (25). С. 53—55.
- 11. Гизатова Н.В. Эффективность использования питательных веществ тёлками казахской белоголовой породы при скармливании им пробиотической добавки Биодарин / Н.В. Гизатова, И.В. Миронова, Г.М. Долженкова, В.И. Косилов // Известия Оренбургского государственного аграрного университета. 2016. № 2 (58). С. 104—106.
- Миронова И.В. Эффективность использования пробиотика Биодарин в кормлении тёлок / И.В. Миронова, Г.М. Долженкова, Н.В. Гизатова, В.И. Косилов // Известия Оренбургского государственного аграрного университета. 2016. № 3 (59). С. 207—210.
- № 3 (59). С. 207—210.

  13. Косилов В.И. Переваримость и использование питательных веществ и энергии корма тёлками при введении в рацион Биодарина / В.И. Косилов, И.В. Миронова, Г.М. Долженкова, Е.Н. Черненков // Известия Оренбургского государственного аграрного университета. 2016. № 6. С. 233—236.