Прогноз развития технологических процессов производства и применения органических удобрений в сельском хозяйстве

А.М. Бондаренко, д.т.н., профессор, **Л.С. Качанова**, к.т.н., Азово-Черноморский инженерный институт — филиал ФГБОУ ВО Донской ГАУ

Тенденции развития агропромышленного производства в настоящее время стимулируют поиск действенных организационно-экономических основ управления технологическими процессами в аграрном секторе в целях повышения эффективности и устойчивости функционирования его отраслей [1—3].

Организационно-экономические основы управления технологическими процессами в аграрном секторе являются одним из направлений в системе мер рационального использования факторов производства, с адаптацией к территориальным, почвенно-климатическим и рыночным условиям хозяйствования, обеспечивающим ресурсосбережение, что в конечном итоге позволяет переориентировать сельское хозяйство на технологический уклад агроинновационного типа [4—6].

В связи с этим представляется актуальной тематика исследования управления технологическими

процессами аграрного сектора в части разработки научно-методических положений и обоснования значимости перспективного развития технологических процессов производства и применения органических удобрений.

Цель исследования — консолидация организационно-экономических основ управления технологическими процессами производства и применения органических удобрений при использовании ресурсно-продуктовых моделей, реализованных в прогнозные сценарии развития.

Важным элементом осуществления государственной аграрной политики является разработка прогнозов развития основных процессов, происходящих в сельскохозяйственном производстве. Организационно-экономические основы управления технологическими процессами производства и применения органических удобрений на основе ресурсно-продуктовых моделей, реализованные в прогнозные сценарии, обладают тем преимуществом, что способны обеспечить учёт неоднородности воздействия различных факторов на производство и качество сельскохозяйственных угодий и в первую очередь зависимости уровня органообеспеченности от поголовья животных, а также урожайности и рентабельности возделывания сельскохозяйственных культур от уровня органообеспеченности в структуре существующих севооборотов [7—10].

Материал и методы исследования. Для составления прогнозных сценариев развития технологических процессов осуществлены формализация и количественная оценка зависимостей, которые дают возможность получения прогнозных экономических показателей и учитывают влияние различных факторов на производство сельскохозяйственной продукции, в частности зависимость уровня органообеспеченности сельскохозяйственных площадей (УОО) от поголовья животных, а также урожайности и рентабельности возделывания сельскохозяйственных культур от уровня органообеспеченности.

Определено, что оптимальными горизонтами являются прогнозные сценарии на средне- и долгосрочную перспективу (регламентационный и экстраполяционный: экстраполяционно-инерционный и экстраполяционно-интеграционный).

Регламентационный прогнозный сценарий составлен на основе концепций развития агропромышленного комплекса и других нормативных документов. Экстраполяционные прогнозные сценарии основаны на методе экстраполяции линии трендов, полученных посредством аналитического выравнивания изменения поголовья животных и птицы.

Экстраполяционно-инерционный прогнозный сценарий предусматривает накопление, переработку навоза в органические удобрения в местах его получения и их внесение на сельскохозяйственные площади.

Экстраполяционно-интеграционный прогнозный сценарий предусматривает накопление, переработку навоза в органические удобрения в сельскохозяйственных организациях - пунктах переработки органики (ППО) и их внесение на сельскохозяйственные площади. Сценарий предполагает частичную переработку сырья в ППО, т.е. накопление и переработку части отходов в ППО-производителях исходного сырья, а части - в ППОпотребителях готового продукта (органических удобрений). Также экстраполяционно-интеграционный прогнозный сценарий предусматривает полную переработку сырья в ППО, т.е. переработка органических отходов ведётся только в организациях-ППО, производящих сырьё, или только организациях ППО, потребляющих органические удобрения.

Для консолидации организационно-экономических основ управления размещением пунктов переработки органики сформирована система ресурсно-продуктовых моделей оптимизации производства и транспортировки органических удобрений. В качестве средства её реализации предлагается информационно-аналитическая система поддержки принятия решений (ИАСППР) межхозяйственных перевозок органических удо-

брений в ресурсно-продуктовом ассортименте с размещением пунктов переработки сырья.

Исходным сырьём для производства удобрений выступают: в животноводстве — навоз различных видов сельхозпредприятий и помёт птицефабрик, в растениеводстве — солома, растительные остатки. В результате переработки получают твёрдые концентрированные органические удобрения (ТКОУ), жидкие концентрированные органические удобрения (ЖКОУ) и концентрированный органический компост (КОК).

Таким образом, интеграция сельскохозяйственных организаций в рамках ППО и научно обоснованная, экономически целесообразная организация переработки органических отходов обеспечивают перераспределение навоза или органических удобрений с территорий, где наблюдается их избыток (профицит), на территории с нехваткой (дефицитом). На основании данного перераспределения происходит выравнивание УОО по территории кластеров, районов, природно-сельскохозяйственных зон и области в целом.

Технология и результаты разработки данных видов прогнозов показаны на основе использования материалов Ростовской области.

Результаты исследования. На основе системы ресурсно-продуктовых моделей оптимизации производства и транспортировки органических удобрений с применением ИАСППР межхозяйственных перевозок и размещения ППО определены затраты на переработку навоза, перевозку навоза и органических удобрений по фактическим данным, а также произведена экстраполяция полученных результатов до 2020 г.

По данным, представленным в таблице, видно, что затраты на производство и транспортировку каждого вида органических удобрений, произведённых по ресурсосберегающим технологиям, значительно ниже, чем суммы недополученной выручки от реализации сельскохозяйственных культур.

Установлено, что наиболее предпочтительным для реализации является экстраполяционно-интеграционный прогнозный сценарий с частичной переработкой навоза в ППО. Вторым по эффективности является экстраполяционно-интеграционный прогнозный сценарий с полной переработкой навоза (помёта) в ППО, в рамках которого производится переработка полного объёма навоза (помёта) в местах его использования. В качестве центров базирования пунктов переработки органики указаны сельскохозяйственные организации — потребители органического удобрения.

Незначительно по величине прибыли от экстраполяционно-инерционного прогнозного сценария отличается экстраполяционно-интеграционный прогнозный сценарий с полной переработкой навоза в ППО. Следует отметить, что затраты на производство и транспортировку по данному сценарию почти в 1,5 раза выше, чем по экстраполяционно-инерционному

Фактические и прогнозные показатели эффективности применения органических удобрений в среднем за год (на примере Ростовской области)

Показатели	20770771 110	Натуральное выражение		Стоимостное выражение		Прибыль от
Вид ОУ	Затраты на пр-во и транспортировку ОУ, млн руб.	валовой сбор зерно- вых, тыс. т	недополученный валовой сбор зерновых по УОО, тыс. т	валовой сбор зерновых, млн руб.	недополученный валовой сбор зерновых по УОО, млн руб.	реализации зерновых, выращенных при использовании ОУ, млн руб.
Ретроспективные данные						
ТКОУ ЖКОУ КОК	513,72 408,35 619,81	1377,81 1349,05 1364,69	198,30 227,07 211,43	10333,59 10117,85 10235,14	1487,26 1703,01 1585,71	9819,87 9709,50 9615,33
Перспективные данные						
Регламентационный прогнозный сценарий						
ТКОУ ЖКОУ КОК	986,37 784,05 1190,07	1478,20 1456,08 1565,09	105,78 127,91 18,89	11086,54 10920,59 11738,19	793,36 959,31 141,71	10100,17 10136,55 10548,12
Экстраполяционно-инерционный прогнозный сценарий						
ТКОУ ЖКОУ КОК	640,96 509,49 773,33	1515,30 1506,47 1550,70	257,25 266,08 221,85	11364,72 11298,50 11630,25	1929,40 1995,63 1663,88	10723,76 10789,01 10856,92
Экстраполяционно-интеграционный прогнозный сценарий (с частичной переработкой сырья в ППО)						
ТКОУ ЖКОУ КОК	658,70 523,59 794,73	1 576,09 1 538,32 1 600,13	209,46 247,23 185,42	11 820,68 11 537,40 12 000,96	1 570,94 1 854,23 1 390,67	11 161,99 11 013,81 11 206,23
Экстраполяционно-интеграционный прогнозный сценарий (с полной переработкой сырья в ППО)						
ТКОУ ЖКОУ КОК	966,14 767,96 1 165,66	1 576,09 1 538,32 1 600,13	209,46 247,23 185,42	11 820,68 11 537,40 12 000,96	1 570,94 1 854,23 1 390,67	10 854,55 10 769,44 10 835,30

сценарию и экстраполяционно-интеграционному сценарию с частичной переработкой в ППО.

Наименее эффективным по отношению к показателям других сценариев является регламентационный. По данному сценарию затраты на производство ТКОУ и ЖКОУ практически аналогичны величине недополученной выручки от неполно объёмного применения органических удобрений, а затраты на производство КОК в 8 раза выше, чем сумма недополученной выручки.

Выводы. Разработанные вариативные прогнозные сценарии демонстрируют различную эффективность. С учётом конкретных условий они рекомендуются к реализации на уровнях: от микрорегионального до общегосударственного при использовании предлагаемых в данном исследовании замкнутого цикла управления технологическими процессами производства и применения органических удобрений на основе ресурсно-продуктовых моделей.

Система ресурсно-продуктовых моделей оптимизации производства и транспортировки органических удобрений с управлением размещения площадок переработки сырья, а также предложенная методика выполнения вариационных прогнозов позволяют осуществлять составление регламентационных и экстраполяционных прогнозных сценариев развития технологических процессов производства и применения органических удобрений, обосновать их эффективность и выполнять разработку целевых программ развития АПК.

Литература

- 1. Волкова И.А., Стукач В.Ф. Управление технологическим развитием сельского хозяйства: ресурсы для развития, институциональная среда, государственное регулирование, кадровый потенциал, рынок инноваций, стратегические приоритеты: монография. Омск: изд-во: Омский государственный аграрный университет имени П.А. Столыпина, 2017. 255 с.
- 2. Волкова И.А., Стукач В.Ф. Управление технологическим развитием сельского хозяйства: региональный аспект: монография. Омск: ООО ИПЦ «Сфера», 2011. 220 с. 3. Сапогова Г.В., Ковальский Р.С., Попова Н.М. Управление
- развитием органического сельского хозяйства // Аграрный научный журнал. 2014. № 7. С. 92–97.
- 4. Эффективность сельскохозяйственного производства: методич. рекомендации / И.Г. Ушачев [и др.]; под ред. И.С. Санду, В. А. Свободина, В.И. Нечаева, М.В. Косолаповой, В.Ф. Федоренко. М.: «Росинформагротех», 2013. 228 с.
- 5. Успенская И.Н. Бюджетирование в системе управления технологическими процессами в растениеводстве // Экономика сельского хозяйства России. 2015. № 9. С. 64–69.
- 6. Lipkovich E.I. Ecological balance of technogenic processes and tractors of fifth generation / E.I. Lipkovich, A.M. Bondarenko, I.E. Lipkovich // Research Journal of Pharmaceutical, Biological and Chemical Śćiences (RJPBCS). Vol. 7, Issue 3, 2016. Рр. 751—760. 7. Бондаренко А.М., Забродин В.П., Курочкин В.Н. Механиза-
- ция процессов переработки навоза животноводческих предприятий в высококачественные органические удобрения: монография. Зерноград: ФГОУ ВПО Азово-Черноморская гос. агроинженерная акад, 2010. 184 с.
- 8. Бондаренко А.М., Бершицкий Ю.И., Кушнарев А.П. Экономическая эффективность внедрения механизированных технологий приготовления и внесения концентрированных органических удобрений // Тез. докл. Междунар. науч.-технич. конф., посвящ. 20-летию ВНИПТИОУ. Владимир, 2001. С. 115—117.
- 9. Успенская И.Н. Управление технологическими процессами в растениеводстве и пути совершенствования его инфор-
- мационного обеспечения // Экономика, труд, управление в сельском хозяйстве. 2015. № 4 (25). С. 80–83.

 10. Vasilieva N.K., Reznichenko S.M., Vasiliev V.P., Trubilin A.I., Bershitskiy Y.I. (2016) Economic stability of agricultural organizations in the region: conceptual-theoretic and applied aspects, International Journal of Economics Research, 6(13),