Качественные показатели спермы козла, сохраняемой при температуре тающего льда

М.М. Айбазов, д.с.-х.н., профессор, **Т.В. Мамонтова**, к.с.-х.н., ВНИИОК — филиал ФГБНУ Северо-Кавказский ФНАЦ; **М.С. Сеитов**, д.б.н., профессор, ФГБОУ ВО Оренбургский ГАУ

Молочное козоводство в Российской Федерации в последние десятилетия развивается быстрыми темпами. Наибольшее развитие эта подотрасль получила в таких формах хозяйствования, как КФХ и ЛПХ, так как разведение коз экономически более эффективно в небольших хозяйствах и в частном секторе. Наряду с этим имеются попытки создания крупных товарных ферм [1]. Прогнозные оценки показывают, что, по-видимому, тенденция и темпы развития сохранятся на ближайшие годы. В то же время молочное козоводство испытывает ряд про-

блем, которые объективно связаны с издержками относительной новизны подотрасли и её роста, и на сегодняшний день решаются очень медленно. В первую очередь это касается хронического дефицита высокоценных козлов-производителей. Отечественный генофонд высокоценных производителей наиболее продуктивных молочных пород (зааненской, альпийской, нубийской), стойко передающих свои качества потомству, фактически отсутствует. Фрагментарный и, как правило, бессистемный завоз производителей из-за рубежа крайне ограничен, предназначен для решения локальных проблем отдельных КФХ и ЛПХ и не решает проблему в масштабах страны.

С другой стороны, в силу ряда экономических причин не все хозяйства могут позволить приоб-

ретение достаточно дорогостоящих животных. К примеру, козлики 4-мес. возраста стоят в стране разведения (Франция, Австрия, Германия) от 700 до 1200 евро. К этому необходимо добавить стоимость карантинных мероприятий и перевозку животных. Анализ показывает, что даже при создании максимально благоприятных условий отход завезённого поголовья составляет в первый год до 30%. Стоимость выбывших животных ложится на себестоимость оставшихся животных, что дополнительно удорожает продукцию от них. Но даже имеющиеся высокоценные производители используются для повышения продуктивности отечественных коз нерационально, и от них в среднем получают в лучшем случае по 400-600 потомков в год. Происходит это по причине использования разных вариантов естественной случки и игнорирования хозяйственниками наиболее прогрессивного метода воспроизводства коз — искусственного осеменения [2]. Справедливости ради следует заметить, что для этого есть и объективные причины: отечественная промышленность перестала выпускать всё оборудование, приборы и приспособления для искусственного осеменения, которые прописаны в приложении к «Инструкции по искусственному осеменению овец и коз», а навязываемые различными дистрибьюторами зарубежные аналоги зачастую худшего качества, хотя стоят кратно дороже.

Таким образом, остро стоит проблема масштабирования использования генофонда имеющегося поголовья высокоценных производителей с целью получения максимального количества потомства. Этого можно достичь организацией осеменения коз сохраняемой и транспортируемой на значительные расстояния спермой.

Технологии краткосрочного (в течение 12-72 часов) сохранения спермы разных видов домашних животных (жеребцов, быков, баранов) разработаны, однако применительно к видовым особенностям спермы козлов имеется мало сообщений. При хранении спермы необходимо учитывать неодинаковую способность спермиев реагировать на охлаждение. Такое свойство спермиев является не только видоспецифичным, но отличается у разных производителей одной породы и даже у разных эякулятов одного и того же производителя. Доказано, что обязательным условием при всех способах хранения спермы является необходимость предварительного её разбавления. Для этого используются различные разбавители (синтетические среды), обеспечивающие поддержание биологической полноценности спермиев в течение определённого времени. Состав среды играет существенную роль в сохранении биологической полноценности спермиев. Все они должны обладать достаточной буферной ёмкостью для поддержания стабильного рН, а их осмотическое давление не должно существенно отличаться от данного показателя свежеполученной спермы [3]. В разбавители также должны входить ингредиенты, обеспечивающие поддержание жизнеспособности спермиев и необходимого уровня энергетических процессов в сохраняемой сперме. Кроме того, установлено, что у мужских гамет по сравнению с соматической клеткой содержание ненасыщенных жирных кислот в мембране высокое, вследствие чего они в значительной степени предрасположены к необратимому окислительному стрессу [4].

Цель настоящего исследования заключалась в изучении сохранности качества спермы козлов при её охлаждении до температуры тающего льда и сохранении в течение 12—72 часов, для чего была поставлена задача сконструировать новую синтетическую среду, учитывающую видовые особенности спермы козлов.

Материал и методы исследования. Эксперименты проводили в половой сезон (октябрь). Сперму получали от зааненских козлов (n=3) общепринятым методом в искусственную вагину. Исследование половых рефлексов козлов и качества спермы проводили в соответствии со стандартной операционной процедурой (СОП) «Получение и оценка качества спермы». Для точного соблюдения методических требований с целью исключения влияния индивидуальных особенностей сперму от всех трёх козлов смешивали и затем, используя принцип разделённых эякулятов, разбавляли испытуемыми синтетическими средами и исследовали.

Охлаждение спермы проводили до околонулевой температуры. Предварительно выяснили, что в обычном пищевом термосе вместимостью 2,0 л при наличии в нём не менее 500 г льда поддерживается постоянная температура в пределах 0—1°С в течение 72 часов. Поэтому в своих опытах разбавленную сперму помещали в широкогорлый бытовой термос объёмом 2,0 л, заполненный на 1/3 кубиками льда. Для предохранения спермы от прямого контакта со льдом флаконы с разбавленной спермой помещали в поролоновые вкладыши.

Результаты исследования. Было выяснено, что половые рефлексы у всех трёх козлов соответствовали норме. Среднее время, затрачиваемое на выделение одного эякулята, составляло $136,0\pm5,1$ сек. Качество спермы характеризовалось следующими показателями (средние показатели по 3 козлам): подвижность свежеполученной спермы $-7,4\pm0,8$ балла, объём эякулята $-0,82\pm0,3$ мл, концентрация спермиев $-4,09\pm0,5$ млрд/мл. Количество спермиев с аномальной морфологией было равно 12,7%. Общее число непатогенных микроорганизмов составляло 3500 шт/см, а патогенные и условно патогенные бактерии, вирусы и грибы не были обнаружены. Эти показатели соответствовали минимальным требованиям к сперме козлов.

Для разбавления спермы козла использовали две синтетические среды. В качестве контрольной была патентованная среда OVIX CELL (Франция),

а в качестве экспериментальной использовали разбавитель TRIS, изменённый по составу и количеству ингредиентов под видовые особенности спермы козла. Сперму разбавляли экспериментальной средой в соотношении 1:2—1:3, в зависимости от её концентрации. Разбавление спермы контрольной средой осуществляли в соответствии с наставлением по её применению.

На первом этапе провели лабораторную оценку качества охлаждённой спермы, для чего сперму оценивали по показателям подвижности через каждые 2 часа. Сравнительными лабораторными тестами выяснили, что сразу после разбавления и в течение 6 часов после подвижность спермы практически не изменялась в обоих разбавителях и была одинаковой (8—7,5 балла). После 12-часового хранения проявилось преимущество экспериментальной среды: подвижность спермы, сохраняемой в опытной среде, составила 7,5 балла, в контрольном разбавителе — снизилась до 7 баллов.

С удлинением срока хранения разница между средами увеличились. Так, в экспериментальной среде через 18 часов подвижность спермиев снизилась только на 10%, в контроле снижение составляло 20—25%, а через 24 и 36 часов эти показатели составили соответственно 6,5 и 5,5 балла и 6.0 и 5.0 балла.

Через 48 ч. хранения при околонулевой температуре сперма, разбавленная в контрольной среде, потеряла подвижность, допустимую для осеменения, — в соответствии с Инструкцией по технологии работы организаций по искусственному осеменению и трансплантации эмбрионов сельскохозяйственных животных (М., 2000) сперма с подвижностью менее 4 баллов не допускается к осеменению. Для спермы, разбавленной в экспериментальной среде, это ограничение наступило на 12 часов позже.

Через 72 часа после помещения спермы в околонулевую температуру клетки в контрольном разбавителе погибли, тогда как в экспериментальной среде количество спермиев с прямолинейным поступательным движением составило 20%. Отмечено, что в контрольной среде число агглютинированных спермиев, а также совершающих колебательные и манежные движения, было существенно больше.

Анализ спермы составляет основу определения оплодотворяющей способности племенного производителя [5]. Из литературных источников известно, что технологические процедуры обработки спермы после взятия значительно влияют

на микроструктуру спермиев [6—9]. Одной из задач настоящего опыта являлось изучение структурных повреждений спермиев в процессе сохранения при околонулевой температуре, которое оценивалось по акроскопическому методу [10].

Для иммобилизации спермы перед исследованием использовали 1-процентный водный раствор хлористого натрия. Каплю подготовленной к использованию спермы наносили на предметное стекло, накрывали тонким покровным стеклом. Избыток влаги удаляли фильтрованной бумагой, придавливая её к стеклу рукой. При этом спермии в остающемся слое жидкости располагались свободно, в один слой. Края покровного стекла запаивали парафином или смазывали вазелином, чтобы в процессе просматривания не происходило высыхания препарата.

Просмотр проводили в оптическом микроскопе при увеличении ×400-500, используя конденсор тёмного поля ОИ-10 или ОИ-13. В каждом препарате подсчитывали 200 спермиев, отдельно регистрируя неподвижные спермии и спермии с повреждёнными акросомами (включая полное отсутствие акросом). Характер и степень структурных повреждений оценивали следующим образом. У неповреждённых спермиев чётко просматривается ярко светящийся контур головки и жгутиков. Среди остальных спермиев различали 4 категории их неполноценности: общее разбухание акросомы, что выражено тусклыми её контурами; начало отслоения акросомы - отсутствие свечения в области экваториального сегмента; потеря акросомы, когда видны только задний ядерный колпачок и жгутики; полная утеря головки, когда видны только жгутики. Необходимо подчеркнуть, что иммобилизация спермиев перед исследованием не позволяет дифференцировать повреждения среди подвижных и неподвижных спермиев.

Результаты опыта представлены в таблице.

Как видно по таблице, процесс хранения независимо от используемого разбавителя в значительной степени повреждает стабилизирующие факторы устойчивости белково-липидных компонентов, в частности акросом спермиев. Через 48 часов после хранения более половины спермиев в обеих синтетических средах имели видимые повреждения оболочки.

Выводы. По итогам исследования установлено, что сперма козла сохраняет высокую подвижность и выживаемость в разработанной нами синтетической среде в течение 48 часов. Это позволяет

Влияние среды и времени хранения на степень структурных повреждений спермиев

Вариант	Структурные повреждения спермиев, в % от общего количества							
	после разбавл.	через 6 ч.	через 12 ч.	через 24 ч.	через 36 ч.	через 48 ч.	через 60 ч.	через 72 ч.
Опыт	15,0	19,0	23,0	41,0	53,0	59,0	68,0	86,0
Контроль	16,0	21,0	26,0	46,0	55,0	63,0	77,0	_

рекомендовать технологию охлаждения, сохранения и транспортировки спермы при температуре тающего льда для искусственного осеменения коз на товарных фермах (КФХ, ЛПХ), расположенных на значительном (800-1000 км) расстоянии от пункта получения спермы. Эффективность технологии существенно вырастет, если её сочетать с технологией синхронизации половой охоты у коз. Таким образом, появляется реальная возможность интенсификации использования высокоценных производителей. При этом целесообразность использования этой технологии диктуется обоюдной заинтересованностью сторон: владелец высокоценного животного получает дополнительный доход от реализации спермы и тем самым снижает затраты на его содержание и эксплуатацию, а хозяйствопокупатель получает возможность интенсивного наращивания высокопродуктивного потомства.

Литература

- Багиров В.А. Рациональное использование генетических ресурсов и гибридизация в козоводстве / В.А. Багиров, П.М. Кленовицкий, Ш.Н. Насибов [и др.] // Сельскохозяйственная биология. 2009. № 6. С. 27–33.
- Аксенова П.В., Айбазов А.-М. Рациональное использование генофонда зааненских производителей // Зоотехния. 2001. № 9. С. 6.

- 3. Озтерклер Й, Ари У. Краткий обзор современных добавок к разбавителям спермы, применяемых для повышения устойчивости семени баранов к замораживанию // Сельскохозяйственная биология. 2017. Т. 52-2. С. 242–250.
- 4. Солер К. Новые методы анализа спермы с использованием системы CASA (computer-assisted sperm analysis) / Солер К., Валверде А., Бомпарт Д. [и др.] // Сельскохозяйственная биология. 2017. Т. 52-2. С. 232—241.
- Айбазов А.М. К вопросу о сохранении генофонда и биологической полноценности криоконсервированной спермы / А.М. Айбазов, П.В. Аксенова, К.К. Ашурбегов, Д.В. Коваленко // Сборник научных трудов Ставропольского научно-исследовательского института животноводства и кормопроизводства. 2011. Т. 1. № 4-1. С. 24–29.
- Желтобрюх Н.А. Нарушения в спермиях баранов в процессе эквилибрации и замораживании // Овцеводство. 1972.
 № 10. С. 33.
- Атрощенко М.М. Сравнительное изучение ультраструктуры сперматозоидов в эпидидимальной, эякулированной и криоконсервированной сперме жеребцов / М.М. Атрощенко, В.В. Калашников, Е.Е. Брагина, А.М. Зайцев // Сельскохозяйственная биология. 2017. Т. 52-2. С. 274–281.
- Leboeuf B., Delgadillo J.A., Manfredi E., Piacère A., Clément V., Martin P., Pellicer M., Boué P., De Cremoux R. Management of goat reproduction and insemination for genetic improvement in France // Reprod. Domest. Anim. 2008. N 43. P. 379–385.
- Багиров В.А. Влияние криоконсервации на биологические параметры семени у гибридов романовской породы и архара / В.А. Багиров, Б.С. Иолчиев, Н.А. Волкова, Н.А. Зиновьева // Сельскохозяйственная биология. 2017. Т. 52-2. С. 268–273.
- Соколовская И.И., Овайдис Р.Н., Абилов А. О значении акросомы в оценке семени самцов // Животноводство. 1981. № 10. С. 45–47.