Продуктивность картофеля сорта Евразия в зависимости от густоты посадки и фона минерального питания на дерново-подзолистых почвах северо-запада России

С.В. Балакина, к.с.-х.н., **Е.Н. Пасынкова**, д.б.н., ФГБНУ Ленинградский НИИСХ «БЕЛОГОРКА»

Площадь питания, являясь одним из важнейших условий, определяющих полноту использования растениями факторов роста и развития, в сочетании с другими агрономическими факторами, в частности с системой удобрений, должна обеспечить в агроценозе оптимальный уровень водного, питательного и радиационного режимов. Исследования показывают, что изучение влияния на урожайность густоты посадки, особенно для новых сортов, является актуальным, и проблему необходимо рассматривать в неразрывной связи с другими агроприёмами, а также с учётом цели выращивания продукции в конкретных почвенноклиматических условиях. Реакция сорта на густоту посадки очень большая, поэтому следует ориентироваться на данные по сортовой агротехнике [1, 2].

В результате исследований, проведённых в различных почвенно-климатических зонах, установле-

на высокая эффективность загущения посадок картофеля, особенно ранних и среднеранних сортов, а также на семенных участках до 65—70 тыс. шт/га. При выращивании на продовольственные цели оптимальная густота составляет 50—55 тыс. шт/га [2—8]. Противоположного мнения придерживаются исследователи, рекомендующие высаживать среднюю семенную фракцию (35—45 мм) с густотой 38 тыс. шт/га, а более крупную семенную фракцию (45—55 мм) — с густотой 27 тыс. шт/га [9].

Использование повышенной густоты посадки картофеля при благоприятных погодных условиях позволяет получить большую прибавку от удобрений, т.к. в этом случае, благодаря увеличению числа растений, возрастают возможности для более полного использования внесённых питательных веществ [10].

В связи с этим **целью** нашего исследования явилось определение оптимальной густоты посадки и уровня минерального питания для картофеля нового среднераннего сорта Евразия, обеспечи-

вающих получение высокого урожая клубней с хорошим качеством.

Материал и методы исследования. Исследование проведено в 2015—2017 гг. в полевом севообороте опытного поля Ленинградского НИИСХ «Белогор-ка». Почва опытного участка дерново-подзолистая легкосуглинистая средне окультуренная со следующими агрохимическими показателями пахотного слоя: PH_{con} . — 5,0—5,6; содержание органического вещества — 2,2—3,1%; подвижного P_2O_5 — 11,2—29,8 мг/100 г почвы; обменного K_2O — 5,7—11,2 мг/100 г почвы. В качестве объекта исследования использовали сорт картофеля Евразия, включённый в 2017 г. в «Государственный реестр селекционных достижений, допущенных к использованию» по Северо-Западному региону.

Сорт Евразия со среднеранним сроком созревания столового назначения получен методом межвидовой гибридизации. В происхождении сорта участвовали дикорастущие виды: S. demissum, S. stoloniferum, S. vernei и культурный тетраплоидный вид *S. andigenum*. Клубни ровные, округлоовальной формы, частично красные с мелкими поверхностными глазками, со светло-жёлтой мякотью, не темнеющие при варке и резке. Глазки средней глубины, красные. Хорошие и отличные вкусовые качества, повышенное содержание сухого вещества и крахмала. Сорт устойчив к обычному патотипу рака картофеля и, что особенно ценно, золотистой картофельной нематоде (R_{01}) . Характеризуется средней полевой устойчивостью ботвы к фитофторозу и высокой устойчивостью клубней. Высокоустойчив к бактериальной гнили. Слабо восприимчив к парше обыкновенной, ризоктониозу и вирусным болезням. Сорт пластичен, показывает высокие адаптационные качества в условиях севера и северо-запада РФ [11].

Использовали общепринятую на опытном поле института агротехнику возделывания. Предшествующая культура – яровые зерновые. Клубни картофеля массой 50-80 г высаживали с густотой 45, 55 и 65 тыс. шт/га (фактор А – густота посадки) на четырёх фонах минерального питания (фактор В): 1. Без удобрений (контроль); 2. $N_{30}P_{30}K_{30}$; 3. $N_{60}P_{60}K_{60}$; 4. $N_{90}P_{90}K_{90}$. Минеральные удобрения вносили в виде азофоски ($N_{16}P_{16}K_{16}$). Площадь учётной делянки — 14,0 м². Повторность в опыте — четырёхкратная. Размещение вариантов проведено методом систематических повторений. Закладка полевого опыта, наблюдения, учёты и статистическая обработка полученных экспериментальных данных методом дисперсионного анализа проведены с использованием методических пособий Б.А. Доспехова [12].

В годы исследования наиболее благоприятными для роста и развития растений картофеля, формирования урожая клубней, их созревания, а также проведения уборочных работ были метеорологические условия вегетационного периода 2015 г. В 2016 г. умеренно тёплая с достаточным

количеством осадков погода первой половины вегетации способствовала хорошему росту надземной массы растений картофеля. Во второй половине вегетации чрезмерная влажность на фоне умеренных температур усиливала активный рост ботвы и увеличивала продолжительность этого периода в ущерб клубнеобразованию и клубненакоплению. Обильные осадки и высокая влажность на фоне повышенных температур в период 3-й декады июля и 1-й декады августа привели к массовому распространению фитофтороза, что, в свою очередь, крайне негативно сказалось на формировании урожая клубней и их физиологическом созревании. Первая половина вегетации растений картофеля в 2017 г. проходила в условиях достаточного увлажнения и умеренно тёплой и прохладной погоды. В июле также преобладала прохладная с частыми осадками погода. Недостаток тепла в июле сдерживал развитие растений картофеля, но способствовал интенсивному росту их надземной массы. Оптимальные температура воздуха и влажность почвы в 1-й и 2-й декадах июля положительно сказались на формировании урожая клубней.

Результаты исследования. Полученные экспериментальные данные свидетельствуют о том, что урожайность картофеля сорта Евразия в значительной степени определялась как метеоусловиями периода вегетации, так и агротехническими приёмами (табл. 1).

Максимальный урожай клубней (25,8-41,1 т/га) был получен в условиях прохладного и влажного вегетационного периода 2017 г., минимальный (15,2-25,5 т/га) — в 2016 г.

Установлена высокая отзывчивость сорта Евразия на внесение полного минерального удобрения. Так, в посадках с густотой 45 тыс. шт/га применение удобрений способствовало росту урожайности на 5,3—9,6 т/га, или 26,1—47,3%, по сравнению с контролем (без удобрений), в более густых посадках (55 тыс. шт/га) прибавка урожая клубней от удобрений была несколько выше — 6,3—12,2 т/га, или 27,5—53,3%. Увеличение густоты посадки от 45 до 55 тыс. шт/га способствовало росту урожайности на 2,6—5,2 т/га (12,8—17,4%), причём эффект от загущения проявлялся сильнее на удобренных вариантах.

В среднем за годы исследования сорт Евразия сформировал максимальный урожай клубней (35,1 т/га) в вариантах с густотой посадки 55 тыс. шт/га и внесением удобрений в дозе $N_{90}P_{90}K_{90}$. Прибавка урожайности от совместного действия дозы $N_{90}P_{90}K_{90}$ и загущения посадок с 45 до 55 тыс. шт/га составляла 14,8 т/га, или 72,9%, по отношению к контролю. Увеличение густоты посадки до 65 тыс. шт/га оказалось малоэффективным приёмом, поскольку не обеспечило роста урожайности по сравнению с посадками 55 тыс. шт/га, и сопровождалось дополнительным расходом посадочного

Фон		обрений гроль)		$N_{30}P_{30}K_{30}$		$N_{60}P_{60}K_{60} \\$		$N_{90}P_{90}K_{90}$			
густота	уро-	прибавка	уро- прибавка уро- прибавка		ypo-	прибавка					
тыс. шт/га	жай- ность	от загу- щения	жай- ность	от загу- щения	от NPK	жай- ность	от загу- щения	от NPK	жай- ность	от загу- щения	от NPK
					201	5 г.					
45 55 65	19,3 22,9 23,7	- 3,6 4,4	25,2 30,4 30,8	5,2 5,6	5,9 7,5 7,1	30,2 35,6 32,2	5,4 2,0	10,9 12,7 8,5	32,6 38,8 33,6	- 6,2 1,0	13,3 15,9 9,9
		, ,							,-	, , ,	- ,-
	HCP ₀₅ 2,1; фактора «густота» – 0,7; фактора «фон» – 0,9 2016 г.										
45	15,2	_	19,5	_	4,3	20,0	_	4,8	21,0	_	5,8
55	16,5	1,3	23,1	3,6	6,6	24,2	4,2	7,7	25,5	4,5	9,0
65	16,2	1,0	17,2	-2,3	1,0	18,3	-1,7	2,1	18,9	2,1	2,7
	HCP_{05} 1,0; фактора «густота» – 0,4; фактора «фон» – 0,4										
						7 г.	1				
45	26,4	_	32,0	_	5,6	34,0	_	7,6	36,0	_	9,6
55 65	29,2 25,8	2,8 -0,6	34,1	2,1 0,4	4,9	36,3 36,9	2,3	7,1	41,1 40,7	5,1	11,9
03	23,8	-0,0	32,4		6,6		2,9	11,1	40,7	4,7	14,9
	HCP ₀₅ 3,7; фактора «густота» 1,3; фактора «фон» 1,5										
4.5	Среднее за 2015–2017 гг.								0.6		
45	20,3	-	25,6	2.6	5,3	28,1	2.0	7,8	29,9		9,6
55 65	22,9 21,9	2,6 1,6	29,2 26,8	3,6 1,2	6,3 4,9	32,0 29,1	3,9 1,0	9,1 7,2	35,1 31,1	5,2 1,2	12,2 9,2
0.5	21,7	1,0	20,0	1,4	т, Л	27,1	1,0	1,2	21,1	1,4	>,∠

1. Урожайность картофеля сорта Евразия в зависимости от агроприёмов, т/га

материала. Вероятно, это объясняется тем, что в загущённых посадках ухудшались условия для процесса фотосинтеза из-за затенения растений и существенно усиливались конкурентные отношения. Падение индивидуальной продуктивности растений в густых посадках (65 тыс. шт/га) не было компенсировано за счёт увеличения их числа на единице площади.

Известно, что число растений на единице площади — потенциальный показатель продуктивности картофеля. Урожайность культуры определяется и средней продуктивностью одного растения, т.е. количеством и массой клубней, зависящих прежде всего от селекционно-генетической основы сорта, а также от агроэкологических условий выращивания. Изучаемые в опыте агроприёмы оказали различное действие на формирование числа и массы клубней, а также структуру урожая (табл. 2).

Повышение уровня минерального питания в посадках картофеля в рамках одной густоты способствовало росту числа завязавшихся на растении клубней и их массы по сравнению с контролем (без удобрений). Так, в посадках с густотой 45 тыс. шт/га в контроле число клубней в расчёте на один куст составляло 10,4 шт. с массой 451 г, а при внесении $N_{90}K_{90}P_{90}$ величины этих показателей достигли 13,2 шт. и 664 г соответственно. Увеличение же густоты посадки в рамках одного агрохимического фона сопровождалось закономерным уменьшением количества клубней и их массы. При увеличении густоты посадки от 45 до 55 тыс. шт/га число их снизилось с 10,4-13,2 до 10,0-12,9 шт., а их масса — с 451-664 до 416-639 г. При дальнейшем загущении до 65 тыс. шт/га количество и масса клубней уменьшились до 9,0—11,1 шт. и 337—478 г соответственно.

Выход нестандартных клубней (<30 мм) в урожае картофеля сорта Евразия находился в пределах 35,5-40,5% от общего их количества, однако по массе на долю данной фракции приходилось лишь 7,5-10,7%. В среднем за три года в урожае преобладала (по массе и количеству) фракция клубней размером 30-60 мм, что обусловлено высокими величинами этих показателей в 2016 г. Тогда доля мелких и семенных клубней (по массе) в урожае составила в среднем 14,6 и 78,0% соответственно, а крупных — лишь 7,6%. В 2015 г. выход крупных (>60 мм) клубней в урожае с посадок различной густоты составил в среднем 40,3%, в 2017 г. -35,5%. При внесении минеральных удобрений в пределах одной густоты в урожае несколько сократился выход нестандартной, а также семенной фракции и возросла доля крупных (>60 мм) клубней.

Исследованиями установлено различное действие изучаемых агроприёмов на формирование таких элементов урожайности, как средняя масса одного клубня, масса семенного и товарного клубня, а также их качество (табл. 3).

Внесение минеральных удобрений в пределах одной густоты посадки оказало положительное влияние на величину средней массы клубня, средней массы товарного и семенного клубней, товарность урожая. Увеличение густоты посадки от 45 до 55 тыс. шт/га практически не оказало какого-либо негативного действия на эти показатели, однако при максимальном загущении посадок наблюдалось существенное снижение их значений. В то же время товарность урожая практически не

2.	Структура	урожая	картофеля	сорта	Евразия в	зависимости	OT	агроприёмов
			(средн	нее за	2015-2017	rr.)		

Густота, тыс. шт/га	Агро- хими-	Число клубней одного куста, шт.		ц клубней в у еству) по фра		Масса клубней одного куста, г	Выход клубней в урожае (по массе) по фракциям, %			
	ческий фон		<30 мм	30–60 мм	>60 мм		<30 мм	30–60 мм	>60 мм	
	1	10,4	38,4	53,9	7,7	451	8,7	66,2	25,1	
45	2	11,1	36,0	53,2	10,8	568	7,7	62,9	29,4	
43	3	12,6	35,7	53,2	11,1	624	7,5	59,8	32,7	
	4	13,2	36,4	53,0	10,6	664	7,5	60,0	32,5	
	1	10,0	40,0	53,0	7,0	416	10,1	64,2	25,7	
55	2	10,7	35,5	52,4	12,1	531	8,3	60,8	30,9	
33	3	11,8	36,4	51,7	11,9	582	8,3	56,6	35,1	
	4	12,9	37,2	51,9	10,9	639	8,5	54,8	36,7	
	1	9,0	40,0	54,4	5,6	337	10,7	69,7	19,6	
65	2	9,4	39,3	52,2	8,5	413	9,7	61,0	29,3	
	3	10,3	38,8	51,5	9,7	448	10,1	56,9	33,0	
	4	11,1	40,5	49,6	9,9	478	9,9	59,3	30,8	

HCP₀₅, шт. 0,7; фактора «густота» – 0,2; фактора «фон» – 0,3 HCP₀₅, г 41; фактора «густота» – 14; фактора «фон» – 17

3. Качество клубней картофеля сорта Евразия в зависимости от агроприёмов (среднее за 2015—2017 гг.)

Густота	Агро- химический фон	масса одного с	Средняя масса	Средняя масса товарного клубня, г	Товар- ность, %	Выход в урожае	Содержание в клубнях,%		
посадки тыс. шт/га			семенного клубня, г			семенной фракции, тыс.шт/га	крах- мала	сухого вещества	
	Контроль	43	54	85	76	251	15,5	21,3	
45	$N_{30}P_{30}K_{30}$	51	60	94	80	264	15,2	21,0	
43	$N_{60}K_{60}P_{60}$	49	55	92	81	303	14,2	19,9	
	$N_{90}K_{90}P_{90}$	50	57	96	81	313	13,7	19,4	
	Контроль	42	51	81	77	290	15,4	21,2	
55	$N_{30}P_{30}K_{30}$	50	57	89	81	310	15,0	20,9	
33	$N_{60}K_{60}P_{60}$	50	54	90	82	335	14,0	19,8	
	$N_{90}K_{90}P_{90}$	50	55	92	82	366	13,6	19,3	
	Контроль	38	48	67	75	303	15,4	21,1	
(5	$N_{30}P_{30}K_{30}$	44	51	77	77	318	14,8	20,8	
65	N ₆₀ K ₆₀ P ₆₀	44	49	77	80	340	14,1	20,1	
	$N_{90}K_{90}P_{90}$	43	52	78	80	351	13,7	19,4	
HCP ₀₅ , % час	HCP ₀₅ , % частн. различ. 1,3 1,2								
фа	фактора «фон» 0,5 0,5								

изменялась в посадках различной густоты в рамках одного агрохимического фона и находилась в пределах 75—82%. Выход в урожае семенной фракции (клубней размером 30—60 мм) возрастал как при повышении агрохимического фона, так и при увеличении густоты посадки.

В 2016 г. величины средней массы одного клубня, семенного и товарного клубней, а также их увеличение под действием удобрений было существенно меньше, чем в 2015 г. и 2017 г. Это связано с ранним и агрессивным поражением надземной массы фитофторозом, что и явилось одной из главных причин низкой урожайности.

Биохимический анализ образцов клубней картофеля сорта Евразия, проведённый после прохождения ими лечебного периода, и статистическая обработка полученных данных показали существенное влияние минеральных удобрений на содержание крахмала и сухого вещества и отсутствие

достоверного влияния на данные показатели качества густоты посадки и взаимодействия изучаемых факторов во все годы исследования.

Дисперсионный анализ показал, что в среднем за три года максимальный вклад в формирование урожая клубней оказало применение минеральных удобрений -67,3-67,8% (табл. 4).

Данные, приведённые в таблице 4, практически полностью согласуются с результатами исследований учёных, рассматривающих удобрения как наиболее сильнодействующий фактор интенсификации технологий возделывания картофеля [3, 13, 14].

Выводы.

- 1. Новый среднеранний нематодоустойчивый сорт картофеля Евразия обладает высокой потенциальной урожайностью при минимуме лимитирующих факторов.
- 2. Для сорта Евразия характерна высокая отзывчивость на внесение минеральных удобрений.

Показа	тель	Урожа	йность	Масса клубней	Число клубней одного куста	
Фактор		валовая	чистая	одного куста		
Густота (А)		18,1	17,7	44,8	38,0	
Агрохимич. фон (В)		67,3	67,8	45,8	51,9	
Взаимолействие (А · В)		5.6	5.7	3.7	3.8	

4. Распределение долей влияния факторов на формирование урожайности картофеля сорта Евразия, % (среднее за 2015–2017 гг.)

Рекомендуемая доза полного минерального удобрения на дерново-подзолистой легкосуглинистой средне окультуренной почве, обеспечивающая урожай клубней более 35 т/га с хорошим качеством, является $N_{90}K_{90}P_{90}$, вносимая под предпосевную культивацию как основное удобрение.

- 3. Возрастающие дозы минеральных удобрений обеспечивают существенный рост урожайности по сравнению с контролем (без удобрений): $N_{30}P_{30}K_{30}$ 5,5 т/га, или 25,4%; $N_{60}P_{60}K_{60}$ 8,0 т/га, или 37,1% и $N_{90}P_{90}K_{90}$ 10,3 т/га, или 47,6%.
- 4. Посадка семенных клубней средней фракции (45—52 мм) с густотой 55 тыс. шт/га может быть рекомендована как при выращивании на продовольственные цели, так и на семеноводческие. Дальнейшее загущение посадок нецелесообразно с технологической и экономической точек зрения, поскольку не обеспечивает достоверной прибавки и сопровождается ростом затрат.
- 5. Максимальная прибавка урожая клубней картофеля по сравнению с контролем получена при густоте посадки 55 тыс. шт/га на фоне минерального питания $N_{90}P_{90}K_{90}$.

Литература

- 1. Шабанов А.Э. Новый сорт картофеля Варяг и особенности его возделывания / А.Э. Шабанов, А.И. Киселев, А.А. Мелешин [и др.] // Картофелеводство: Инновационные технологии селекции и семеноводства картофеля: матер. междунар. науч.-практич. конф. М., 2017. С. 177—185.
- тер, междунар, науч.-практич. конф. мг., 2017. С. 177–185. 2. Писарев Б.А. Сортовая агротехника картофеля. М.: Агропромиздат, 1990. 208 с.
- 3. Власенко Н.Е. Удобрение картофеля. М.: Агропромиздат, 1987. 219 с.

- Чехалкова Л.К., Конова А.М., Самойлов Л.Н. Влияние комплекса агротехнических приёмов на урожайность нового сорта картофеля // Плодородие. 2016. № 6 (93). С. 25–27.
- Шашкаров Л.Г., Григорьев Я.М. Рост и развитие растений картофеля в зависимости от густоты посадки клубней // Вестник Чувашской государственной сельскохозяйственной академии. 2017. № 3 (3). С. 35—39.
- Шабанов А.Э. Отзывчивость новых сортов картофеля на разные дозы, способы внесения минеральных удобрений и загущение посадок / А.Э. Шабанов, А.И. Киселев, С.Н. Зебрин [и др.] // Мировые генетические ресурсы картофеля и их использование в современных направлениях селекции: матер. науч. конф. (к 125-летию со дня рождения Н.И. Вавилова). М., 2012. С. 217—224.
- Васильев А.А. Зависимость урожая и качества клубней картофеля в лесостепной зоне Южного Урала от уровня минерального питания и густоты посадки // Доклады Российской академии сельскохозяйственных наук. 2014. № 5. С. 25–28.
- Васильев А.А. Урожайность картофеля сорта Агат в зависимости от густоты посадки и уровня питания // Учёные заметки ТОГУ. 2017. Т. 8. № 4. С. 506—513.
- Анисимов Б.В., Орлова С.М., Зайцева Н.Н. Как правильно рассчитать норму посадки картофеля // Картофель и овощи. 2011. № 3. С. 10.
- Синягин И.И. Агротехнические условия высокой эффективности удобрений. 2-е изд., перераб. и доп. М.: Россельхозиздат, 1980. 222 с.
- Евдокимова З.З., Калашник М.В., Балакина С.В. Новый среднеранний сорт картофеля Евразия и некоторые агроприёмы его возделывания // Картофелеводство: Инновационные технологии селекции и семеноводства картофеля: матер. междунар. науч.-практич. конф. М., 2017. С. 202—210.
- 12. Доспехов Б.А. Методика полевого опыта. М.: Агропромиздат, 1985. 251 с.
- 13. Иванов А.И., Архипов М.В., Конашенков А.А. и др. Реализовать биоклиматический потенциал // Сельскохозяйственные вести. 2015. № 4. С. 36—39.
- 14. Тимошина Н.А., Федотова Л.С., Князева Е.В. Факторы формирования урожайности и качества картофеля // Картофелеводство: Инновационные технологии селекции и семеноводства картофеля: матер. междунар. науч.-практич. конф. М., 2017. С. 177—185.