Организация технического сервиса и ремонта техники при производстве и внесении органических удобрений

А.М. Бондаренко, д.т.н., профессор, **Л.С. Качанова**, к.т.н., доцент, Азово-Черноморский инженерный институт — филиал ФГБОУ ВО Донской ГАУ

Рациональная организация технического сервиса и ремонта является предпосылкой эффективного использования базового звена агропромышленного комплекса — машинно-тракторного парка. Сельскохозяйственная техника и машины применяются на всех этапах производства продукции растениеводства, животноводства, при реализации основных, вспомогательных и дополнительных технологических процессов. Технологические процессы производства органических удобрений, внесения органических и минеральных удобрений требуют наличия соответствующей сельскохозяйственной и специализированной техники. Уровень исполь-

зования технических средств, а также затраты на их обслуживание оказывают значительное влияние на себестоимость производимой продукции [1, 2].

Анализ состояния аграрного сектора выявил сокращение основных показателей материально-технического обеспечения, производственных мощностей, несмотря на меры, принимаемые Министерством сельского хозяйства РФ. В Российской Федерации по сравнению с 1990 г. площадь пашни в обработке уменьшилась со 115,3 млн га до 54,4 млн га, в том числе под зерновыми и зернобобовыми — с 62,9 млн до 31,6 млн га, производство зерна сократилось в 1,22 раза, молока — в 2,7 раза (табл. 1) [3].

Материал и методы исследования. Патогенез сложившейся ситуации многогранен. Однако определяющими предпосылками являются не-

1. Посевные площади сельскохозяйственных культур по Российской Федера	нии, тыс.	га
---	-----------	----

Подоруда пурман	Год								
Посевная площадь	1990	1995	2000	2005	2010	2015	2016	2017	1990 г., %
Вся посевная площадь	115288	93045	74192	60472	56104	55101	54723	54437	47
Зерновые и зернобобовые культуры	62948	50901	40675	34698	32048	32052	31933	31618	50
Технические культуры	6093	5676	5364	5521	7874	9028	9502	9804	161
Картофель	1319	370	231	154	233	207	195	171	13
Овощи открытого грунта	410	225	167	90	90	93	94	95	23
Бахчевые культуры	130	68	52	19	21	21	16	13	10
Кормовые культуры	44310	35787	27690	19985	15834	13697	12982	12734	29

Примечание: составлено авторами по данным Федеральной службы государственной статистики [3]

2. Внесение удобрений под посевы в сельскохозяйственных организациях по Российской Федерации

D	Год									
Внесено удобрений	1990	1995	2000	2005	2010	2015	2016	2017	1990 г., %	
Внесено органических удобрений										
Всего, млн т	389,5	127,4	66,0	49,9	53,1	64,2	65,2	66,6	17	
На один гектар посевной площади, т	3,5	1,4	0,9	0,9	1,1	1,3	1,4	1,5	43	
Внесено минеральных удобрений										
Всего, млн т	9,9	1,5	1,4	1,4	1,9	2,0	2,3	2,5	25	
На один гектар посевной площади, кг	88	17	19	25	38	42	49	55	63	

Примечание: составлено авторами по данным Федеральной службы государственной статистики [2]

достаточное использование ресурсно-сырьевой базы аграрного сектора в части производства и применения органических удобрений при сокращении технической оснащённости аграрного производства в целом, а также при недостаточном технико-технологическим обеспечении процессов переработки органических отходов растениеводства и животноводства.

По сравнению с 1990 г. внесение органических удобрений в посевные площади сократилось в 5,8 раза, что привело к снижению внесения на 1 га — в 2,3 раза (табл. 2). Наблюдается снижение применения минеральных удобрений [3, 4].

По отношению к 1990 г. поставки селу тракторов сократились в 6,3 раза, пресс-подборщиков — в 4,0 раза, машин для внесения твёрдых органических удобрений — в 19,7 раза, машин для внесения жидких органических удобрений — в 11,3 раза (табл. 3) [3]. Практически отсутствует техника для реализации технологических процессов переработки навоза и помёта.

Аналогично ситуации по стране формируется и используется материально-техническая база аграрного сектора Ростовской области. Машиннотракторный парк агропромышленного комплекса области составляет в настоящее время 50% от технологически потребного количества, износ техники достиг 45%, в работоспособном состоянии удаётся поддерживать лишь 50—60% имеющихся в наличии машин [3]. Таким образом, отчётливо прослеживается острая необходимость пополнения машинно-тракторного парка аграрного сектора новой техникой, а также поддержание в удовлетворительном техническом состоянии используемой техники.

Важно отметить специфику реализации технологических процессов производства органических удобрений по перевалочной технологии (ферма – бурт, штабель – поле). Наряду с традиционной техникой для переработки органических отходов здесь применяется ворошитель буртов. Отечественная машиностроительная отрасль не поставляет данный вид машин. Сельхозтоваропроизводители вынуждены пользоваться импортными аналогами ворошителей. Самоходные и прицепные ворошители ABONO, прицепной ворошитель компоста Willibald TBU 3P, прицепные ворошители MENART SP, ворошители BACKHUS – в настоящее время выбор техники на рынке представлен различными модификациями с разнообразными характеристиками. Однако следует отметить, что стоимость данной техники значительна, а фирменный технический сервис и ремонт не всегда в полном объёме удовлетворяет потребности отечественного агрария [5, 6].

Целью исследования является обоснование необходимости усовершенствования конструкции ворошителя на основе адаптации к условиям отечественного аграрного производства с учётом формирования системы технического сервиса и ремонта.

Актуальность исследования подчеркивается тем, что в современных условиях технический сервис и ремонт сельскохозяйственной техники становятся неотъемлемым элементом формирования стабильных темпов развития аграрного производства в регионе.

Задачи формирования системы технического сервиса и ремонта следующие:

• выполнение технологических процессов в строго регламентированные агросроки за счёт поддержания машинно-тракторного парка сель-

П	Год								
Посевная площадь	1990	1995	2000	2005	2010	2015	2016	2017	1990 г., %
Тракторы	1365,6	1052,1	746,7	480,3	310,3	233,6	223,4	216,8	16
Пресс-подборщики	80,4	65,1	44,0	32,4	24,1	20,9	20,4	19,9	25
Разбрасыватели твёрдых	110,7	71,6	34,3	19,7	16,6	15,5	15,7	15,5	14
минеральных удобрений									
Машины для внесения в почву									
Твёрдых органических удобрений	92,6	48,8	22,0	10,9	6,5	4,8	4,7	4,7	5
Жидких органических удобрений	41,9	26,2	12,1	5,8	3,9	3,6	3,6	3,7	9

3. Посевные площади сельскохозяйственных культур по Российской Федерации, тыс. га

Примечание: составлено авторами по данным Федеральной службы государственной статистики [3]

скохозяйственной организации в постоянной технической готовности, что характеризуется коэффициентом технической готовности;

- сокращение издержек труда и средств на техническое обслуживание и ремонт, на восстановление работоспособности машин при применении современных технических средств и технологий диагностирования и прогнозирования остановочного ресурса узлов и комплектующих машин;
- эксплуатация машин и оборудования при реализации технологических процессов, в том числе по производству и применению органических удобрений, на протяжении длительного срока ввиду их долговечности при использовании по назначению.

Результаты исследования. Основная причина сокращения машинно-тракторного парка, обслуживающего аграрное производство, заключается в неудовлетворительном уровне технического сервиса и ремонта, а также в отсутствии в аграрном секторе функционала фирменного сервиса. В результате эксплуатируемая сельскохозяйственная техника не проходит установленные виды технического обслуживания в регламентированные сроки, что способствует возникновению отказов в работе в период полевых работ, реализации технологических процессов переработки органических отходов, а также к преждевременному выходу техники из строя [7, 8].

В настоящее время ввиду отсутствия фирменного технического сервиса основная часть сельскохозяйственной техники как общего, так и специализированного назначения обслуживается и ремонтируется силами хозяйств, и только небольшая часть - силами специализированных предприятий. Низкая квалификация работников сельскохозяйственных предприятий, а также отсутствие необходимых приборов и приспособлений для реализации технического обслуживания и ремонта техники приводят к некачественному обслуживанию или его полному отсутствию. Кроме того, причиной низкого уровня технического обслуживания на местах в сельскохозяйственных организациях может быть материальная незаинтересованность работников в поддержании техники в исправном состоянии. Стоимость услуг специализированных фирменных предприятий технического сервиса высока. Однако качество услуг по техническому обслуживанию часто неудовлетворительное. Так, при проведении операций технического обслуживания и ремонта не соблюдаются в полной мере установленные технические и эксплуатационные требования, не выполняются условия договоров на выполнение работ по критериям качества, сроков, объёмов и стоимости. Осложняет сложившуюся ситуацию значительная стоимость запасных частей, комплектующих, топливно-смазочных материалов [9, 10].

Реализация технологических процессов производства и применения органических удобрений должна учитывать различные организационноправовые формы и типоразмеры сельских товаропроизводителей, обеспечиваться соответствующими типами и классами машин и оборудования с учётом их годовой загрузки и объёмов работ в хозяйстве, применяемые ресурсосберегающие технологии, надёжность и эффективность, в первую очередь экономическую, а также рационального распределения сервисных и ремонтно-обслуживающих работ между сельскими товаропроизводителями и обслуживающими предприятиями [11].

Отечественный аграрий как основной потребитель сельскохозяйственной техники должен получить возможность приобретать высококачественные и надёжные машины и оборудование российского производителя, соответствующие уровню зарубежных аналогов. Как показывает мировой опыт, производство сельскохозяйственной техники такого уровня возможно только при организации последующего технического сервиса и ремонта за счёт фирмы-производителя. Важно отметить, что в данной ситуации права сельхозтоваропроизводителя — потребителя данной техники, должны быть защищены экономическими, юридическими мерами, а главное — должны быть закреплены законодательно [12].

Для совершенствования применения системы технического сервиса и ремонта следует задействовать весь арсенал инструментария. Как инструменты повышения эффективности должны применяться научно обоснованные системы рациональной организации труда, более адаптивные методы и технологии управления технологическими процессами производства и применения органических удобрений. В действующей системе аграрного сек-

тора экономики в рамках существующего правового поля ко всем предприятиям, независимо от формы собственности, организационно-правовой формы, предъявляются одинаково высокие требования к уровню управления технологическими процессами с использованием перспективных ресурсосберегающих технологий производства и применения органических удобрений. Повышение эффективности управления технологическими процессами невозможно достичь, не имея полной, достоверной и своевременной информации о деятельности как всего предприятия в целом, так и его подразделений в отдельности.

Совокупность информации с высоким уровнем достоверности, оперативности призвана обеспечить система автоматизированного учёта производственной деятельности предприятия, базирующаяся на новейших технологиях сбора, обработки, хранения и представления информации о реализации технологических процессов.

Определённые трудности в управлении машинно-тракторным парком сельхозорганизации, мастерской в её составе может вызвать переход инженерных и сервисных служб на арендный подряд и хозяйственный расчёт. Это связано с увеличением количества оперативной информации и расчётных данных, необходимых для принятия обоснованных управленческих решений. Основным условием целесообразности управленческих решений в рассматриваемой сфере организации технического сервиса и ремонта при реализации технологических процессов производства и применения органических удобрений выступает применение современных информационных компьютерных технологий.

К задачам управления техническим сервисом и ремонтом машинно-тракторного и автопарка сельскохозяйственного предприятия относятся: формирование карт диагностики по машинам; установление закономерностей динамики ресурсных параметров; постановка диагноза при плановых проверках; разработка номенклатуры работ по ремонту и техническому обслуживанию; обоснование необходимости направления технических средств на техническое обслуживание и ремонт; корректировка плана-графика на основе фактического поступления машин; компиляция заборной ведомости по запасным частям, материалам и комплектующим; начисление заработной платы исполнителям и др.

На микроуровне выбор методов управления системой технического сервиса и ремонта должен базироваться на исследовании эксплуатационных и технологических требований к новой технике или адаптированному варианту зарубежного аналога.

Макроуровень предопределяет учёт таких факторов, как организационно-правовая форма сельскохозяйственного предприятия и специализированных предприятий технического сервиса и ремонта, отношение руководства к реализуемой

системе технического обслуживания, экономическая ситуация в регионе базирования предприятий, уровень развития аграрного сектора страны в целом и региона в частности.

При формировании технико-технологической политики развития сервиса и ремонта на предприятии в рамках выработки стратегических решений следует учитывать опыт других стран и регионов. Исследования показывают, что за рубежом функционируют различные формы технического сервиса и ремонта - от прямых контактов фирмы-изготовителя с потребителем до участия посреднических организаций с широким спектром предлагаемых дополнительных услуг (помимо перепродажи техники потребителю). В ряде западных стран активно функционирует институт дилерства, как наиболее распространённая форма организации технического сервиса и ремонта сельскохозяйственной техники. Однако в последние 15-20 лет наметилась тенденция снижения числа дилерских предприятий и спад экономической эффективности их деятельности. В то же время происходит уменьшение оборота продаж сельскохозяйственной техники практически во всех странах мира с одновременным усилением внимания к операциям технического сервиса и ремонта [13, 14].

В современных условиях развития аграрного сектора РФ в большинстве сельскохозяйственных предприятий резко снизился количественный состав машинно-тракторного парка. Важно отметить, что балансовая стоимость основных средств почти в пять раз превышает размер валового внутреннего продукта сельхозпредприятий АПК, продолжает увеличиваться моральный и физический износ машинно-тракторного парка. В этой ситуации выдвигаются новые требования к организации системы технического сервиса и ремонта как основного инструмента сохранения техники в работоспособном состоянии.

Основным условием восстановления нормального уровня технической оснащённости сельскохозяйственных предприятий является формирование эффективно действующей системы рынка производственно-технических услуг и формирование государственной политики в этом направлении. Первостепенно в рассматриваемой сфере восстановление эффективной системы технического сервиса и ремонта на предприятиях аграрного сектора.

Необходимо учитывать, что система технического обслуживания и ремонта машин, с одной стороны, это комплекс мероприятий, технических средств, документации по техническому обслуживанию, ремонту и исполнителей, необходимых для выполнения работ по поддержанию и восстановлению работоспособности машин, но с другой стороны — это особая экономическая категория, генерирующая одновременно издержки производства и ресурс воспроизводства (восстановления)

машин. Формируясь одновременно, затраты и ресурсы обосновывают значимый спектр экономических показателей предприятий технического сервиса: себестоимость, прибыль, цена, налоги, количественные и качественные оценки производственного потенциала реализации технологических процессов.

Вопросы организации технического сервиса и ремонта при реализации технологических процессов производства и применения органических удобрений, как инструмента управления состоянием и воспроизводственным процессом машинно-тракторного парка предприятия, особо актуальны в виду недостаточного государственного бюджетного финансирования данной сферы аграрного сектора.

Выводы. Формирование и развитие фирменного технического сервиса и ремонта наряду с созданием отечественных аналогов ворошителей призвано минимизировать затраты на их техническое обслуживание и ремонт, а в совокупности с разработкой экономических механизмов взаимодействия между предприятиями аграрного сектора и стимулирования привлечения предприятий технического сервиса и ремонта, заводов-изготовителей способствовать повышению работоспособности машин и оборудования сельхозтоваропроизводителей. Организация технического сервиса и ремонта специализированными фирменными предприятиями создаст предпосылки для разработки и внедрения организационно-экономического механизма повышения производительности специализированной техники, её качества, надёжности и позволит отечественным маркам ворошителей конкурировать на внутреннем рынке, а со временем – и на мировом рынке техники.

Литература

1. Кравченко И.Н., Пузряков А.Ф., Корнеев В.М. Технологические процессы в техническом сервисе машин и обо-

- рудования: учеб. пособие. М.: Альфа-М: ИНФРА-М, 2017. 346 с.
- 2. Зубрилина Е.М. Методы и средства управления качеством: учеб. пособие / Е.М. Зубрилина, В.П. Димитров, Л.В. Борисова [и др.]. Ростов-на-Дону: Издательский центр ДГТУ, 2017.
- Россия в цифрах. 2018: Крат. стат. сб. /Росстат. М., 2018, 522 с. [Электронный ресурс]. URL: http://www.gks.ru/free_doc/doc_2018/rusfig/rus18. pdf.
- Внесение удобрений и проведение работ по химической мелиорации земель по городским округам и муниципальным районам Ростовской области в 2017 году: стат. бюл./ Ростовстат. Ростов-на-Дону, 2018. 40 с.
- Пастухов А.Г., Димитров В.П., Зубрилина Е.М. Основные тенденции обеспечения качества машин и оборудования // Проблемы и решения современной аграрной экономики: сб. матер. XXI междунар. науч.-производ. конф. «Проблемы и решения современной аграрной экономики». Ростов-на-Лону. 2017. С. 66—67.
- Корнеев В.М., Кравченко И.Н., Корнеева Е.Н. Логистика технического сервиса. М.: Изд-во РГАУ-МСХА, 2016. 142 с.
- 7. Корнеев В.М. Технологическая подготовка предприятий технического сервиса: учеб. пособ. / В.М. Корнеев, И.Н. Кравченко, Д.И. Петровский [и др.] М.: ИНФРА-М, 2018. 260 с.
- Корнеев В.М., Петровская Е.А. Система оценки качества услуг предприятий технического сервиса // Вклад молодых учёных в инновационное развитие АПК России: матер. междунар. науч.-практич. конф. молодых учёных (27–28 октября). Пенза: РИО ПГСХА, 2016. С. 118–121.
- 9. Kuznetsov N.I. Provisions for effective development of regional agricultural systems in Russia's economy / N.I. Kuznetsov, N.V. Ukolova, S.V. Monakhov, J.A. Shikhanova // Journal of Advanced Research in Law and Economics. 2017. T. 8. № 2. C. 490–495.
- 10. Sandu I.S. Methodological aspects of social and economic efficiency of the regional activities / I.S. Sandu, M.Ya. Veselovsky, A.V. Fedotov, E.I. Semenova, A.I. Doshchanova // Journal of Advanced Research in Law and Economics. 2015. T. 6. № 3. C. 650–659.
- Серёгин А.А., Лебедев А.Т., Павлюк Р.В. Функциональное резервирование элементов механических приводов // Научная жизнь. 2016. № 11. С. 6–16.
- Savkin V.I. Food security of Russia in the conditions of the WTO // European science review. 2014. № 7–8. P. 142–144.
- Trukhachev, V.I. The strategic directions of innovative economy development in Russian agribusiness / V.I. Trukhachev, V.Z. Mazloev, I.Yu. Sklyarov, Yu.M. Sklyarova, E.N. Kalugina, A.V. Volkogonova // Montenegrin Journal of Economics. 2016. T. 12. No 4. P. 97–111.
- 14. Trukhachev, V.I. Contemporary state of resource potential of agriculture in South Russian / V.I. Trukhachev, I.Y. Sklyarov, J.M. Sklyarova, L.A. Latysheva, H.N. Lapina // International Journal of Economics and Financial Issues. 2016. T. 6. № S5. P. 33–41.