Урожайность и структура урожая разнобиологических гибридов зернового и сахарного сорго селекции ООО «Евралис Семанс Рус»

Г.Ф. Ярцев, д.с.-х.н., В.В. Безуглов, к.с.-х.н., Р.К. Байкасенов, к.с.-х.н., К.А. Кальжанов, соискатель, Е.Ю. Фурман, соискатель, ФГБОУ ВО Оренбургский ГАУ; А.П. Кравцов, агроном-консультант, ООО «Евралис Семан Рус»

Сорго является культурой универсального типа использования. Его выращивают на зерно, сенаж, силос и зелёный корм.

Современное состояние кормовой базы не обеспечивает полной реализации генетического потенциала продуктивности сельскохозяйственных животных и птиц. Стабилизировать кормовую базу можно за счёт расширения посевов культур с высоким содержанием углеводов и энергии на уровне 10—11 мДж/кг сухого вещества. В решении этой проблемы особая роль принадлежит сорговым культурам.

Сорго обладает высокой засухоустойчивостью, невысокой требовательностью к питательным веществам и почвам, может конкурировать и превосходить кукурузу по продуктивности. Оно хорошо переносит почвенную и воздушную засуху и может формировать урожаи без орошения у самых границ полупустыни. Сорго не случайно называют «верблюдом растительного мира» [1].

Высокое содержание тонина в кормовой и пищевой промышленности обладает отрицательными свойствами, т.к. снижает доступность и перевариваемость белка. Поэтому выведение гибридов сорго без танина — одна и самых главных задач селекционеров.

Гибриды компании ООО «Евралис Семанс Рус» отвечают всем требованиям пищевой индустрии. Хотя содержание танина в гибридах компании указано меньше 0,14%, но фактическое его содержание равно нулю [2].

Зерновое сорго содержит 11—15% белка, 68—73% крахмала, 3,5—4,5% жира, каротин, витамины группы В, рибофлавин и дубильные вещества.

К преимуществам сахарного сорго относятся высокая урожайность листостебельной массы и зерна, возможность использования на сенаж, сено, силос, зелёную подкормку. По кормовым достоинствам зелёная масса сорго приближается к кукурузе. В 100 кг зелёной массы содержится 20—25 кормовых единиц [3—6].

Учитывая биологические особенности сорго и хозяйственно ценные признаки, считаем, что в условиях степной зоны Южного Урала эта культура заслуживает особого внимания для создания и укрепления кормовой базы животноводства.

В связи с этим возникает необходимость проведения исследований по изучению различных групп спелости и назначения сорго компании ООО «Евралис Семанс Рус» на южных чернозёмах Оренбургского Предуралья, определение их потенциальной продуктивности.

Цель и задачи исследования: определить наиболее продуктивные варианты зернового и сахарного сорго компании ООО «Евралис Семанс Рус» в условиях центральной зоны Оренбургской области.

Материал и методы исследования. Исследование проводили на учебно-опытном поле Оренбургского ГАУ в 2018 г. Учётная площадь делянок составляла 10 м^2 , повторность опыта трёхкратная. Изучаемым фактором являлись различные гибриды сорго по группам спелости в линейке компании ООО «Евралис Семанс Рус». В сегменте RUAG исследовались шесть очень раннеспелых гибридов (вариантов) зернового сорго, в сегменте RUBG — шесть среднеранних гибридов зернового сорго, в сегменте RUFF — шесть гибридов сахарного сорго.

Опыт закладывался на среднемощных южных чернозёмах тяжелосуглинистого механического состава. Содержание гумуса в пахатном слое составляло 4,4%, подвижного фосфора -4,5 мг, обменного калия -27 мг на 100 г почвы, pH=7,8 [7].

Погодные условия 2018 г. характеризовались малым количеством осадков и невысокими температурами воздуха.

Во время вегетации сорго осадков практически не выпадало, за исключением первой декады июня и второй декады июля, когда осадков выпало несколько выше среднемноголетних норм.

Сорго хорошо растёт и развивается при температуре 30—35°С. В период вегетации сорго температура воздуха варьировала от 13,9 до 27,5°С, что было намного ниже необходимых величин.

Низкие температуры в первой половине вегетации и недостаточно высокие температуры воздуха во второй значительно замедляли развитие и снижали продуктивность сорго.

Результаты исследования. В нашем исследовании количество растений перед уборкой зернового сорго в сегменте RUAG варьировало от 114 до 279 тыс/га (табл. 1).

Урожайность сырой зелёной массы в сегменте RUAG была наименьшей — 49,3 ц/га — на II варианте, где число растений перед уборкой составляло

165 тыс/га. Наибольшая урожайность зёленой массы — 101,9 ц/га — отмечена на I варианте, где перед уборкой сохранилось 198 тыс/га растений.

К моменту уборки, 30 сентября 2018 г., влажность зерна в среднем составляла 21,7%. На V варианте влажность зерна была наименьшей — 16,1%, где густота стояния растений составляла 125 тыс/га. Наибольшая влажность зерна (30,5%) отмечена на VI варианте, где посевы были наиболее загущены.

Средняя урожайность зерна зернового сорго при стандартной влажности составляла 16,8 ц/га. Наименьшая урожайность зерна (4,4 ц/га) сформировалась на VI варианте. Наибольшая урожайность (26,9 ц/га) получена на I варианте, где число метёлок составляло 198 тыс/га. Количество метёлок по вариантам опыта варьировало от 114 до 260 тыс/га. Следует также отметить, что все варианты зернового сорго в сегменте RUAG сформировали метёлки и полноценное зерно в них, в отличие от зернового сорго в сегменте RUBG и сахарного сорго в сегменте RUFF, что говорит о том, что эти гибриды можно выращивать в природно-климатических условиях Оренбуржья.

На зерновом сорго в сегменте RUBG количество растений в среднем составляло 217 тыс/га (табл. 2).

Влажность зелёной массы варьировала от 57,1 до 66,2%.

Средняя урожайность сухого вещества зернового сорго в сегменте RUBG составляла 24,4 ц/га. Наименьшее количество сухого вещества сорго — 17,2 ц/га — образовалось на VI варианте. Наибольшая урожайность сухого вещества (38,4 ц/га) сформировалась на IV варианте.

Из шести вариантов зернового сорго в сегменте RUBG только два варианта образовали метёлки. Из двух вариантов только один заслуживает вни-

- 1			U	_				DILLO
- 1	CTDVKTVDA	урожая і	и урожайность	гиорилов	зернового	CODEO E	з сегменте	KUA(†

Вариант	Число растений, тыс/га	Урожайность сырой зелёной массы, ц/га	Число метёлок, тыс/га	Урожайность влажного зерна, ц/га	Влажность зерна, %	Урожайность зерна при стандартной влажности, ц/га
I	198	101,9	198	31,6	26,8	26,9
II	165	49,3	158	15,6	20,3	14,5
III	114	71,5	114	16,1	17,7	15,4
IV	260	72,6	260	22,9	18,8	21,6
V	125	70,7	110	18,6	16,1	18,1
VI	279	58,5	180	5,8	30,5	4,4

2. Структура урожая и урожайность гибридов зернового сорго в сегменте RUBG

Вариант	Число растений, тыс/га	Урожайность сырой зелёной массы, ц/га	Влажность зелёной массы, %	Урожайность сухого вещества, ц/га	Число метёлок, тыс/га	Урожайность влажного зерна, ц/га
I	352	38,5	66,2	25,5	_	_
II	143	42,6	61,9	26,4	47	3,7
III	352	33,0	60,4	19,9	_	_
IV	161	64,4	59,6	38,4	161	12,3 (10,7 станд.)
V	139	33,3	57,1	19,0	_	_
VI	154	27,4	62,8	17,2	_	-

	1	• 1	1	•	
Вариант	Число растений, тыс/га	Урожайность сырой зелёной массы, ц/га	Влажность зелёной массы, %	Урожайность сухого вещества, ц/га	Число метёлок, тыс/га
I	227	28,5	64,5	18,4	_
II	106	31,5	66,8	21,0	_
III	147	62,6	67,3	42,1	_
IV	191	20,7	60,5	12,5	_
V	180	35,2	62,8	22,1	_
VI	202	29.6	64.2	19.0	_

3. Структура урожая и урожайность гибридов сахарного сорго в сегменте RUFF

мание. Это IV вариант, где урожайность влажного зерна составляла 12,3 ц/га, а при переводе на стандартную влажность — 10,7 ц/га. На данном варианте число растений при уборке составляло 161 тыс/га. Следует отметить, что на V варианте гибрид не сформировал метёлки, даже при наименьшей густоте растений на единице площади, что говорит о том, что этот гибрид не подходит для возделывания в природно-климатической зоне Оренбургской области.

Число растений сахарного сорго в сегменте RUFF в среднем по опыту составляло 176 тыс/га. Влажность зелёной массы колебалась от 60,5 до 66,8% (табл. 3). Наименьшая урожайность сухого вещества (12,5 ц/га) отмечена на IV варианте опыта, а наибольшая — 42,1 ц/га — на III варианте.

Вывод. Наибольшую урожайность зерновому сорго в сегменте RUAG обеспечивает первый очень раннеспелый гибрид (I вар.). Варианты зернового

сорго в сегменте RUBG не успели сформировать метёлки, за исключением четвёртого среднераннего гибрида (IV вар.). Наибольшая продуктивность сахарного сорго в сегменте RUFF отмечена на третьем гибриде (III вар.).

Литература

- 1. Посыпанов Г.С. Растениеводство: учебник / под ред. Г.С. Посыпанова. М.: КолосС. 2007. 612 с.: ил.
- 2. Каталог 2018–2019. EURALIS. C. 75.
- 3. Кадыров С.В. Сорго в ЦЧР (научное издание) / С.В. Кадыров, В.А. Федотов, А.З. Большаков [и др.]. Ростов-на-Дону: ЗАО «Росиздат», 2010. 80 с.
- Шибко Д.В. Продуктивность и питательная ценность зеленой массы сорго – суданкового гибрида // Зоотехническая наука Беларуси. 2007. Т. 42. С. 423–430.
- Ковтунова Н.А., Шишова Е.А. Сорго-суданковые гибриды селекции ВНИИЗК // Зерновое хозяйство России. 2013. № 3. С. 38–41.
- 6. Ковтунова Н.А. Экологическое испытание сортов и гибридов зернового сорго / Н.А. Ковтунова, В.В. Ковтунов, А.В. Барановский [и др.] // Зерновое хозяйство России. 2018. № 4 (58). С. 42–47.
- 7. Ряховский А.В., Батурин И.А., Березнёв А.П. Агрономическая химия. Оренбург, 2004. 283 с.