Экологические проблемы при производстве молока с учетом генетических особенностей симментальских и помесных коров

Г.И.Бельков, чл.-корр. РАН, д.с.-х.н., профессор, **В.А.Панин**, д.с.-х.н., ФГБНУ ФНЦ БСТ РАН

Аграрный сектор в разных странах всегда исполнял существенную роль, оказывая влияние как на решение продовольственной проблемы, так и на функционирование всей экономики. В наиболее развитых странах мира молочное скотоводство характеризуется стабильностью, динамичным ростом, освоением интенсивных технологий и сопровождается увеличением производства молока и молочной продукции.

Молочное скотоводство следует рассматривать как превалирующую отрасль скотоводства. Это определено тем, что от скота молочных пород получают более 99% молока и около 50% говядины — важнейших продуктов питания населения планеты. В зависимости от экологических и природно-климатических особенностей отдельных зон, районов и хозяйств скотоводство может быть молочного и мясомолочного направления продуктивности [1-5].

Подъём производства высококачественного продовольствия, получаемого от отрасли скотоводства — проблема, с годами не теряющая своей актуальности. Более того, с ростом населения на планете, в том числе и в России, значение отрасли, призванной удовлетворять потребности человека в продуктах питания, всё больше возрастает. В связи с этим развитию молочной отрасли придаётся громадное значение [6-11].

На показатели молочной продуктивности, в частности, на величину удоя, массовой доли жира, молочного жира оказывает влияет множество факторов как внешней, так и внутренней среды, среди которых особое место занимают экологические проблемы. Безусловно, самыми важными являются генетически заложенные потенциалы, но без экологически обоснованного кормления и содержания чистопородные и помесные особи не смогут реализовать все свои генетически заложенные возможности [12—14].

Материал и методы исследования. В ходе выполнения исследования был произведён отбор чистокровных симментальских коров (n = 17), помесных особей 1/2 кровности 1-го поколения с голштинской породой (n = 17) и помесей 3/4 кровности по голштинам (вторая и третья лактация, n = 17). Актуальность исследования обусловлена тем, что применительно к условиям Южного Урала отсутствуют данные по повышению уровня молочной продуктивности и качества молока с учётом влияния экологических проблем на увеличение генетического потенциала и устойчивость к биотическим и абиотическим факторам чистопородного симментальского скота и их помесей, приобретённых от скрещивания с голштинской породой.

Цель исследования заключалась в получении экспериментальных данных по показателям молочной продуктивности и созданию новых высокоэффективных селекционных форм животных, обладающих высоким генетическим потенциалом и заданной продуктивностью на основе использования современных биотехнологических методов.

В задачи исследования входило определение показателей молочной продуктивности и качества молока коров для создания породной группы помесных особей, полученных от скрещивания симментальских коров с голштинскими быками в экологических условиях Южного Урала.

Материалом для исследования послужили документы зоотехнического учёта. Выращивание и кормление обследуемых особей в естественногеографических, климатических и кормовых условиях Оренбургской области было одинаковым и проводилось согласно разработанной методики. При выполнении исследования использовали клинически здоровых коров, соблюдая ветеринарные и санитарные требования. При проведении исследования применяли анализатор качества молока Лактан-1-4 САП, универсальный доильный аппарат, устройство «Milko-Tester MKII 12700», устройство «PRO-MilkMkII 12500», электронные весы ВСП4—1000—ЖСО.

Результаты исследования. Результаты проведённого исследования в 2012-2018 гг. показывают, что перспективным способом увеличения производства высококачественного молока с учётом экологических особенностей Южного Урала является скрещивание коров симментальской породы с быками-производителями голштинской породы. Для увеличения молочной продуктивности коров симментальской породы целесообразно скрещивать с быками чёрно-пёстрой и красно-пёстрой масти голштинской породы, что способствует получению от помесей за лактацию от 3655 до 3985 кг молока. Осуществляемое скрещивание симментальских коров с быками голштинской породы различных популяций свидетельствует об эффективности использования для производства молока помесей в основном за счёт повышения генетического потенциала молочных коров, разводимых в Оренбургской области. Применение результатов генетических достижений в области молочного скотоводства имеет большое значение для реализации увеличения селекционного прогресса коров симментальской породы и голштин ×симментальских помесей для целевого дальнейшего племенного использования.

Ожидаемый срок получения результатов -2027 г. Предполагается, что результаты исследования окажут положительное влияние на экономику региона (Оренбургская область), будут способствовать развитию сельского хозяйства в регионе с учётом экологических проблем. Будет создан дополнительный резерв увеличения производства молока путём формирования в зоне Южного Урала собственной племенной базы на основе голштинской породы. Обосновано использование её для повышения молочной и мясной продуктивности и улучшения качества молока коров симментальской породы. Создание популяции нового высокопродуктивного молочного скота методом скрещивания с быками голштинской породы приведёт к повышению продуктивности особей симментальской породы на 20-25%, а также к повышению их приспособленности к экологическим условиям резко континентального климата Южного Урала.

При проведении исследования изучали пестициды, удобрения и накопление их остатков в молоке коров; токсичные элементы в окружающей среде, кормах и молоке; зависимость между содержанием токсичных микроэлементов в рационе и степенью накопления их в молоке и молочных продуктах; результаты обследования почв хозяйствпоставщиков молока; результаты оценки кормов на экологическую безопасность; безопасность кормов для молочных коров, выращиваемых в экологически чистых зонах Оренбургской области, молоко которых используется для выработки продуктов детского питания. Также определяли безопасность молочного сырья в отношении содержания в молоке и молочных продуктах нитратов, нитритов, нитрозаминов и пестицидов. Изучалось производство экологически чистого молока и требования к его безопасности для производства продуктов детского питания; факторы, влияющие на молочную продуктивность и качество молока коров разного генотипа.

Результаты анализа кормов, используемых в опыте при производстве молока подопытными коровами, включающего определение уровня токсичных элементов, пестицидов, нитратов и нитритов показаны в таблице 1. По таблице видно, что и голштин×симментальские помеси, и особи симментальской породы потребляли корма, в натуральном виде содержащие в своём составе одинаковое количество токсичных элементов, пестицидов, нитратов и нитритов. Хотя их уровень и не превышал максимально допустимой концентрации, вероятность трансформации их в продукцию (молоко) достоверно сохранялась.

Анализируя таблицу 2, следует учесть, что максимально допустимый уровень в корме составляет: Hg = 0.01 мг/кг, Cd = 0.2 мг/кг, Pb = 2.0 мг/кг, As = 0.5 мг/кг; в воде: Hg = 0.005 мг/кг, Cd = 0.001 мг/кг, Pb = 0.03 мг/кг, As = 0.003 мг/кг; максимально допустимый уровень нитратов в комбикорме = 100 мг/кг, в травосмеси люцерны, кукурузы

1. Показатели безопасности корма в натуральном виде в группах подопытных коров

		Вид корма								
Показатель		комбикорм	зелёная масса траво- смеси	зелёная масса куку- рузы	зелёная масса люцерны	соль	мел	вода		
	Hg	< 0,004	<0,004	<0,004	<0,004	<0,004	<0,004	<0,004		
Токсический элемент, г/кг	Cd	0,02	0,03	0,03	0,03	0,000	0,001	<0,01		
	Pb	0,19	0,13	0,22	0,24	0,029	0,003	0,002		
	As	<0,0022								
Нитраты, мг/кг		26,0	32,0	29,0	35,0	0,0	0,0	0,0		
Нитриты, мг/кг		0,0								
Пестициды гексахлорцикло-										
гексан		< 0,003	< 0,003	< 0,003	< 0,003	< 0,003	< 0,003	<0,003		
$(\alpha, \beta, \gamma$ -изомеры), мг/кг										
ДДТ и его метаболиты, мг/кг		< 0,004	< 0,004	< 0,004	< 0,004	< 0,004	< 0,004	<0,004		

	Показатель, мг/кг									
Вид корма	сумма изомеров ГХЦГ	метаболиты ДДТ	нитраты (по иону)	нитриы (по иону)	цинк (Zn)	медь (Си)	свинец (Рb)	ртуть (Нg)	кадмий (Сd)	мышьяк (As)
Зелёные корма и силос	0,005	<0,004	200,0	10,0	50,0	30,0	2,0	0,01	0,2	0,5
Сенаж	0,01	<0,004	200,0	10,0	50,0	30,0	2,0	0,01	0,2	0,5
Солома	0,01	<0,004	200,0	10,0	50,0	30,0	2,0	0,01	0,2	0,5
Концентраты	0,01	<0,004	-	-	50,0	30,0	2,0	0,01	0,2	0,5
Комбикорма для КРС	0,01	<0,004	500,0	10,0	50,0	30,0	2,0	0,01	0,2	0,5
Зерновые	0,01	<0,004	300,0	10,0	50,0	30,0	2,0	0,01	0,2	0,5
Грубый корм	0,01	<0,004	500,0	10,0	50,0	30,0	2,0	0,01	0,2	0,5
Жом свеклов.	0,005	<0,004	800,0	10,0	50,0	30,0	2,0	0,01	0,2	0,5
Суточная норма	0,22 -0,32 мг	0,05–0,0 мг	10–12 г	0,3-0,4 г	Н.д.					

2. Предельно допустимая концентрация содержания в кормах токсических веществ (для крупного рогатого скота)

(зелёной массе) — 500 мг/кг, в воде — 45,0 мг/кг; максимально допустимый уровень нитритов в корме — 10 мг/кг, в воде — 3,3 мг/кг; максимально допустимый уровень гексахлорциклогексана (α , β , γ — изомеры), мг/кг-0,004; ДДТ и его метаболитов, мг/кг — 0,005; гептахлора, карбофоса, метафоса, базудина, фосфамида, гранозана, аминной соли 2,4-Д — не допускается.

Скопление токсичных тяжёлых металлов (кадмий (Cd), свинец (Pb) и микроэлементов (кальций Са, магний Мg, фосфор Р, медь Сu, железо Fe, хром Ст, марганец Мп, цинк Zn) в основных питательных веществах рациона было проанализировано в молоке коров разных генотипов: симментальской породы, двух группах помесных особей -1/2-кровности 1-го поколения с голштинской породой и помесей 3/4-кровности по голштинам, которые содержались на ферме, расположенной в экологических и природно-климатических условиях Оренбуржья. Элементы определены с использованием индуктивно-связанной плазмы и атомноэмиссионной спектрометрии. Проведённое исследование обнаружило недостоверную разницу: молоко коров симментальской породы отличалось более выгодным минеральным составом (табл. 3) и уменьшенной концентрацией тяжёлых металлов при сопоставлении с молоком помесных особей. В молоке симментальских коров выявлены относительно более низкие концентрации Pb, Cd и Сг и значительно более высокие концентрации Fe и Mg, а также более высокие концентрации Са, Мп и Se. В составе молока особей изучаемых генотипов выявлена несколько более высокая, чем рекомендуемая (в норме), концентрация Рь. В молоке особей всех генотипов установлены значительные положительные корреляции между концентрациями следующих элементов: Pb - Cd, Pb - Co, Cr - Co, Cr - Mr, Zn - Cu, Zn - P,Ca - P, Ca - Mg, и Mg - P.

Молоко, выдоенное из молочной железы, может нести многочисленные чужеродные вещества,

которые представляют собой технологический фактор риска для вырабатываемых молочных продуктов, а в последующем и для здоровья потребителя. Исследование остаточной концентрации тяжёлых металлов в молоке может являться прямым показателем гигиенического состояния молока, а также косвенным показателем степени загрязнения окружающей среды, в которой выращивалась и содержалась корова, продуцирующая молоко.

В последние десятилетия повышение содержания в молоке вредных веществ считается одним из самых существенных опасных аспектов. Присутствие металлов является общим собирательным понятием применительно к группе металлов и др. элементов, имеющих атомарную плотность больше, чем 6 г/см. Следы металлов в молоке обширно известны, в основном это такие элементы, как кадмий (Cd), медь (Cu), железо (Fe), свинец (Pb), и цинк Zn, каковые обычно принято связывать с загрязнением окружающей среды и экологическими проблеммами токсичности. Одной из основных экологических проблем с такими металлами является их способность к биоаккумуляции. Остатки или следы тяжёлых металлов, содержащиеся в коровьем молоке, особенно настораживают в связи с тем, что определённое количество молока потребляют дети и подростки.

По данным таблицы 3 следует, что содержание цинка в пробах молока варьировало в границах 0.0012-0.0014 мг/л и составляло в среднем менее 1.0% от предельно допустимой концентрации. Присутствие кадмия в пробах молока изменялось от 0.001до 0.003 мг/л, что составляло 5.0-10.0% от ПДК, среднее значение содержания свинца составляло 0.0025 мг/л, или 12.5 ПДК.

Приведенные результаты анализа присутствия тяжёлых металлов в содержании молока показывают, что все исследованные элементы находились на уровне значительно ниже предельно допустимых концентраций.

3. Показатели состава молока исследуемых коров

	Содержание компонентов		Генотип (X±Sx)			
Показатель	в среднем	пределы колебаний	симментальские	помеси 1/2-кровности	помеси 3/4-кровности	
Количество сухого вещества,%	12,5	11,0 - 17,0	13,44±1,14	13,36±1,22	13,28±119	
Количество жира, %	3,8	2,5-6,5	3,85±0,07	3,79+0,05	3,72±0,07	
Количество СОМО, %	8,5	7,8 - 9,5	8,63±0,12	8,58±0,13	8,57±0,15	
Количество белка, %	3,3	2,4-5,5	3,22 ±0,15	3,18±0,14	3,15±0,17	
Количество казеина, %	2,7	2,2-4,0	2,67±0,15	2,59±0,15	2,55±0,14	
в % к общему белку	-	-	83,0	81,5	80,8	
α-казеин	-	-	32,6	32, 7	32, 7	
β-казеин	-	-	56,2	56, 0	56, 0	
ү-казеин	-	-	11,2	11, 3	11, 3	
Количество сывороточных белков, %	0,5	0,4-0,7	0,58±0,07	$0,56\pm0,09$	0,56±0,09	
в % к общему белку	-	-	18,01	17,61	17,78	
Содержание лактозы, %	4,7	4,0-5,6	4,62±0,18	4,59±0,17	4,55±0,17	
Количество минеральных веществ, мг%	0,8	0,6 – 1,1	0,771±0,05	$0,742\pm0,06$	0,739±0,06	
Са, мг/л	-	-	0,12±0,02	0,12+0,02	0,12±0,04	
Р, мг/л	-	-	0,09±0,02	0,09±0,02	0,09±0,03	
Zn, мг/л	5,0	ПДК	0,0012±0,03	0,0013±0,04	0,0014±0,02	
Cd, мг/л	0,02	ПДК	0,001±0,05	$0,002\pm0,07$	0,002±0,06	
РЬ, мг/л	0,02	ПДК	0,002±0,08	$0,003\pm0,07$	0,003±0,07	
Си, мг/л	1,0	ПДК	0,06±0,007	$0,05\pm0,006$	0,05±0,004	
Мп, мг/л	0,60	ПДК	0,14±0,005	0,12±0,004	0,11±0,005	
Hg, мг/л	0,005	ПДК	0,00006±0,01	0,00006±0,01	0,00006±0,01	
Ni, мг/л	0,23	ПДК	0,0	0,0	0,0	
Fe, мг/л	1,3	ПДК	1,41±0,16	1,37 ±0,14	1,39±0,15	
Зола, %	0,8	-	0,85±0,01	$0,82\pm0,01$	0,80±0,01	
Плотность, °А	-	-	28,43±0,19	28,32±0,29	28,31±0,24	
Кислотность, °Т	-	-	17,42±0,51	17,51+0,53	17,39±0,44	

Выводы. Показатель молочной продуктивности указывает на способность коровы приспосабливаться к эколого-климатическим и хозяйственным условиям региона. Выполненная оценка показателей молочной продуктивности коров исследуемых генотипов выявила преимущество помесных особей по количеству надоенного молока в сравнении со своими симментальскими сверстницами, однако по содержанию в молоке минеральных веществ и микроэлементов, напротив, преимущество установлено на стороне чистокровных животных.

Голштин × симментальские коровы опережали по надою чистокровных сверстниц симментальской породы и обладали преимуществом по массовой доле жира и белка в молоке, количество же представленных элементов было низким и в молоке чистопородных коров. При проведении исследования обнаружено, что содержание отдельных химических элементов в составе молока, в том числе тяжёлых металлов, не превышало учреждённых требований по ПДК.

Литература

- 1. Велибекова Л.А. Актуальные вопросы селекционноплеменной работы в животноводстве Дагестана // Генетика и разведение животных. 2017. № 1. С. 60 – 62.
- 2. Казиев М-Р.А., Велибекова Л.А., Сердерова Г.Р. Развитие рынка сельскохозяйственной продукции и стратегия маркетинга // Вопросы структуризации экономики. 2011. № 1. С. 100 107.

- 3. Захаров В.Л., Федулова М.Г. Повышение витаминной ценности кисломолочных продуктов с помощью добавок плодов дикорастущих плодово-ягодных растений // Агропромышленные технологии Центральной России. 2017. № 1 (3). С. 22—29.
- Захаров В.Л., Макурина А.Д. Физико-химические и органолептические показатели сливочного масла, реализуемого в торговой сети Липецкой области // Агропромышленные технологии Центральной России. 2017. № 1 (3). С. 13 – 17.
- Бельков Г.И., Панин В.А. Молочная продуктивность помесей, полученных от скрещивания коров симментальской породы с быками голштинской породы различных популяций // Доклады Российской академии сельскохозяйственных наук. 2015. № 3. С. 47 – 49.
- Бельков Г.И., Панин В.А. Повышение генетического потенциала продуктивности симментальского и красного степного скота путём скрещивания с голштинской породой // Известия Оренбургского государственного аграрного университета. 2015. № 4 (54). С. 101 104.
- Мироненко С.И. Показатели экономической эффективности выращивания крупного рогатого скота разного направления продуктивности в условиях Южного Урала / С.И. Мироненко, В.И. Косилов, Д.А. Андриенко [и др.] // Вестник мясного скотоводства. 2014. № 3 (86). С. 58 63.
 Мироненко С.И., Косилов В.И., Жукова О.А. Особенно-
- Мироненко С.И., Косилов В.И., Жукова О.А. Особенности воспроизводительной функции тёлок и первотёлок на Южном Урале // Вестник мясного скотоводства. 2009. Т. 2. № 62. С. 48 – 56.
- Косилов В.И., Никонова Е.А., Мироненко С.И. Эффективность многопородного скрещивания коров молочного направления продуктивности с быками мясных пород // Вестник мясного скотоводства. 2013. № 4 (82). С. 31 36.
- Косилов В.И. Воспроизводительная функция чистопородных и помесных маток / В.И. Косилов, С.И. Мироненко, Е.А. Никонова [и др.] // Известия Оренбургского государственного аграрного университета. 2012. № 5 (37). С. 83 85.
- Левахин В., Косилов В., Салихов А. Эффективность промышленного скрещивания в скотоводстве // Молочное и мясное скотоводство. 2002. № 1. С. 9 – 11.

 Панин В.А. Повышение генетического потенциала симментальского скота путём использования лучшего отечественного и мирового генофонда // Научное обеспечение агропромышленного комплекса России: матер. Всерос. науч.-практич. конф., посвящ. памяти Р.Г. Гареева. Казань, 2012. С. 418 – 422. Панин В.А. Некоторые показатели молочной продуктивности симментальских коров, их полукровных и трёхчетвертных помесей по голштинской породе // Вестник мясного скотоводства. 2014. № 2 (85). С. 34 – 38.