Оценка общего белка и его фракционного состава при лечении телязиоза крупного рогатого скота различными способами

А.К. Днекешев, к.в.н., **Ф.Б. Закирова**, к.с.-х.н., **И.Н. Жубантаев**, к.с.-х.н., **А.К. Кереев**, д. философии (PhD), Западно-Казахстанский АТУ; **М.С. Сеитов**, д.б.н., профессор, ФГБОУ ВО Оренбургский ГАУ

В частных племенных хозяйствах Западно-Казахстанской области, где развивается скотоводство мясного направления и в основном разводят казахскую белоголовую породу, в последние годы были зарегистрированы массовые заболевания глаз инвазионного характера в форме гнойных кератоконъюнктивитов [1].

Массовые болезни глаз паразитарного характера, в том числе телязиоз, при пастбищном содержании крупного рогатого скота в летне-осеннее время сопровождаются сильным снижением как среднесуточного привеса молодняка при откорме, так и уменьшением молокоотдачи подсосных коров, что наносит ощутимый экономический ущерб мясному скотоводству области [2].

Данное заболевание у крупного рогатого скота наблюдается преимущественно у молодняка, составляющего основное поголовье хозяйств, содержащегося для откорма. Среди других заболеваний органов зрения телязиоз имеет наиболее высокий процент в исследуемых хозяйствах.

Применение ретробульбарной новокаиновой блокады у крупного рогатого скота при массовых глазных заболеваниях в сочетании с препаратом Ивермектин и антибиотиком является одним из методов патогенетической терапии при лечении осложнённых этой инвазией кератоконьюнктивитов [3, 4].

Для анализа изменения резистентности организма при лечении телязиоза с применением различных схем лечения особое внимание уделяется изучению биохимического состава крови, определяющего внутреннее состояние организма и его адаптационные возможности во время лечения. Знание этих механизмов позволяет сознательно управлять процессами онтогенеза, избирательно воздействовать на различные важнейшие стороны жизнедеятельности организма.

Ценным и достаточно объективным материалом для оценки состояния внутренней среды организма при лечении кератоконьюнктивитов различными схемами, уровня направленности обменных процессов и активности его защитных систем могут стать некоторые биохимические показатели, в том числе изменение общего белка и его фракционного состава в сыворотке крови.

Важное физиологическое значение общего белка состоит в подержании постоянства онкотического давления, рН крови, уровня катионов в крови;

также белок играет важную роль в образовании иммунитета, различных комплексов с углеводами, липидами, гормонами и другими важными веществами в организме животного.

В связи с этим целью исследования являлась оценка общего белка и его фракционного состава в сыворотке крови молодняка крупного рогатого скота при лечении телязиоза по различным схемам.

Материал и методы исследования. Объектом исследования послужили бычки казахской белоголовой породы, поражённые гельминтами Thelazia rhodesi, находящиеся на откорме в частных племенных скотоводческих хозяйствах мясного направления (Акжаикский район, Западно-Казахстанская область) в количестве 15 гол. Животные условно были разделены на три группы по 5 гол. в каждой. Больных бычков I гр., поражённых личинками и гельминтами Thelazia rhodesi, после проведения ретробульбарной блокады и ирригации конъюнктивы глаза лечили окситетрациклиновой мазью. Животных II гр. лечили после проведения ретробульбарной блокады и ирригации глаза местно эритромициновой мазью. Бычков III опытной гр. с глазными заболеваниями паразитарного характера в первый день лечили после проведения ретробульбарной блокады и ирригации препаратом Ивермек-гель (Ивермектин) в дозе 1–1,5 мл, в последующие дни лечение проводили антибиотиком Мастимицином, 1 мл пасты. Во всех группах во время применения сравнительных схем лечения проводили общее клиническое обследование жи-

Ретробульбарная новокаиновая блокада была разработана как один из методов патогенетической терапии при лечении глазных болезней у крупного рогатого скота. Терапевтический эффект её связан с заменой сильного раздражения слабым, изменением нервной трофики поражённых тканей, усилением притока крови к поражённому органу и улучшением его питания. После введения 0,5%-ного раствора новокаина появляется незначительное выпячивание глазного яблока, расширение зрачка, опускание верхнего века, набухание конъюнктивального мешка, век и склеры, наблюдается выпадение третьего века и хемоз конъюнктивы.

Общий белок и его фракционный состав в сыворотке крови экспериментальных животных определяли в условиях лаборатории Западно-Казахстанского аграрно-технического университета им. Жангир хана (г. Уральск). Уровень общего белка учитывали по изменению величины рефракции в зависимости от количества белков в сыворотке крови на рефрактометре RL (POLAND). О содержании белковых фракций судили по изменению оптичес-

кой плотности сыворотки крови при добавлении фосфатного буфера различной концентрации [5, 6].

Результаты исследования. Патогенное воздействие телязий на организм молодняка крупного рогатого скота проявляется снижением уровня общего белка, альбуминов, лейкоцитозом, естественной резистентности и повышением активности ряда ферментов крови [7].

Сравнительный анализ полученных данных свидетельствует об общности количественных изменений сывороточного белка и его фракций у бычков при лечении кератоконъюнктивитов паразитарного характера с применением различных схем, сводившихся к увеличению числовых значений этих показателей к концу эксперимента. При этом степень увеличения и изменения изучаемых показателей в первую очередь зависела от схемы лечения телязиоза и наиболее чётко проявилась в конце опыта. Оценка общего белка и его фракционного состава в сыворотке крови животных, находящихся в одинаковых условиях содержания и кормления, после проведения лечения разными схемами выявила определённые различия.

Результаты опыта показали, что при использовании окситетрациклиновой мази на фоне ретробульбарной блокады в I гр. среднее количество дней лечения составляло $24,5\pm0,05$ (табл. 1). Количество общего белка в сыворотке крови бычков через 5 сут. после первой обработки составляло $63,52\pm0,05$ г/л, что указывает на улучшение общего состояния животных на 5,22% (P<0,01).

На 12-е сутки исследования в крови животных I гр. количество общего белка увеличилось на 7,53% (P<0,001), а на 20-е сутки после применения третьей обработки схемы лечения — на 12,30% (P<0,001) по сравнению с началом заболевания, и свидетельствовало о выздоровлении животных.

Во II опытной гр., где для лечения бычков использовали конъюнктивально эритромициновую мазь после проведения ретробульбарной блокады и ирригации, в среднем по группе количество дней на лечение составляло $15,3\pm0,35$.

В сыворотке крови животных II гр. количество общего белка через 5 сут. после первой обработки составляло $64,25\pm0,08$ г/л, что свидетельствует об улучшении общего состояния на 1,14% (P<0,01) по сравнению с животными I гр. (табл. 2). На 12-е сут. у бычков II гр. после применение второй схемы лечения количество общего белка в сыворотке крови было равно $67,32\pm0,02$ г/л, или на 3,29% (P<0,01) больше, чем у молодняка I гр., что указывает большую эффективность второй схемы лечения.

При использовании в качестве местного лечебного средства Ивермектин в сочетании с ретробульбарной блокадой 0.5%-ным раствором новокаина в III гр. среднее количество дней лечения в опыте составляло 10.2 ± 0.02 . К концу опыта все животные в группе были здоровы.

У животных III экспериментальной гр. (табл. 3) на 5-е сутки после первой обработки количество общего белка было равно $67,56\pm0,05$ г/л, или на 5,98 и 4,99% (P<0,001) выше, чем у молодняка I и II гр., что указывает на более быстрое улучшение общего состояния животных при данной схеме лечения. На 12-е сут. количество общего белка в крови бычков III гр. увеличилось на 9,97 и 8,14% (P<0,001) по сравнению с показателями в I и II опытных гр.

В процессе исследования было выявлено, что при кератоконъюнктивитах инвазионного характера альбуминовая и глобулиновые фракции в сыворотке крови заметно снижаются, что подтверждает влияние данной патологии на биохимический фракционный состав сыворотки крови.

1. Изменение общего белка и его фракционного состава в сыворотке крови бычков
при лечении телязиоза окситетрациклиновой мазью, r/n ($n=5$)

Показатель, Γ/Π	Больные животные		Через 5 сут.		Через 12 сут.		Через 20 сут.	
	X±Sx	Cv	X±Sx	Cv	X±Sx	Cv	X±Sx	Cv
Общий белок	60,21±0,02	1,02	63,52±0,05	1,22	65,11±0,03	1,15	68,65±0,02	1,18
Альбумины	27,15±0,03	1,45	29,66±0,02	1,48	31,15±0,05	1,28	33,12±0,02	1,17
Глобулины:								
α-глобулины	$11,02\pm0,02$	1,14	$12,32\pm0,05$	1,56	$14,01\pm0,03$	1,58	15,85±0,08	1,56
β-глобулины	$9,89\pm0,08$	1,23	$10,70\pm0,02$	1,10	$12,98\pm0,02$	1,78	13,15±0, 01	1,63
γ-глобулины	$22,30\pm0,05$	1,50	$25,02\pm0,02$	1,85	$26,92\pm0,05$	1,28	$27,57\pm0,02$	1,26

2. Изменение общего белка и его фракционного состава в сыворотке крови бычков при лечении телязиоза эритромициновой мазью (n=5)

Показатель, г/л	Больные животные		Через 5 сут.		Через 12 сут.		Через 20 сут.	
	X±Sx	Cv	X±Sx	Cv	X±Sx	Cv	X±Sx	Cv
Общий белок	61,28±0,10	1,63	64,25±0,08	1,45	67,32±0,02	1,70	70,65±0,02	1,35
Альбумины	26,45±0,05	1,78	30,12±0,04	1,23	$32,10\pm0,02$	1,14	35,24±0,01	1,25
Глобулины:								
α-глобулины	$11,25\pm0,02$	1,52	$13,96\pm0,02$	1,47	$16,20\pm0,05$	1,28	18,20±0,02	1,72
β-глобулины	$9,15\pm0,05$	1,56	11,13±0,05	1,83	13,25±0,01	1,27	$14,17\pm0,02$	1,21
γ-глобулины	$22,30\pm0,05$	1,50	$25,02\pm0,02$	1,85	$26,92\pm0.05$	1,28	$27,57\pm0,02$	1,26

у-глобулины

Показатель,	Больные животные		Через 5 сут.		Через 12 сут.		Через 20 сут.		
г/л	X±Sx	Cv	X±Sx	Cv	X±Sx	Cv	X±Sx	Cv	
Общий белок Альбумины	60,75±0,01 26,80±0,02	1,12 1,26	67,56±0,05 32,01±0,02	1,01 1,23	72,32±0,08 36,14±0,01	1,70 1,82	74,65±0,02 39,02±0,08	1,40 1,63	
Глобулины: α-глобулины β-глобулины	10,85±0,02 9,30±0,01	1,75 1,22	14,22±0,05 12,45±0,02	1,89 1,36	17,32±0,01 14,02±0,02	1,69 1,58	20,56±0,02 15,30±0,08	1,15 1,52	

1,85

 $31,65\pm0,02$

 $27,20\pm0,01$

3. Изменение общего белка и его фракционного состава в сыворотке крови бычков при лечении телязиоза ивермек-гелем конъюнктивально (n=5)

Максимальное количество альбуминовой фракции содержалось в сыворотке крови животных III гр.: на 5-е сут. показатель увеличился на 26,28%, на 12-е сут. — на 11,43% по сравнению с предыдущим показателем. В конце эксперимента альбуминовая фракция в сыворотке крови бычков III гр. повысилась по сравнению с началом лечения на 31,32%. В сыворотке крови молодняка II гр. альбуминовая фракция повысилась по сравнению с началом лечения на 24,95%, у животных I гр. этот показатель увеличился только на 18,13%, т.е. процесс выздоровления проходил более медленно.

 $22,02\pm0,02$

1,50

Кроме того, в сыворотке крови бычков I гр., кератоконъюнктивиты у которых лечили на фоне ретробульбарной блокады окситетрациклиновой мазью, содержание α -, β - и γ -глобулиновых фракций было наименьшим.

Установленная динамика белкового состава сыворотки крови у молодняка крупного рогатого скота при лечении кератоконъюнктивитов паразитарного характера с применением различных схем объясняется эффективностью лекарственных средств, устранением основной причины заболевания с помощью препарата Ивермектин в начале лечения.

К концу опыта в сыворотке крови бычков III гр. достоверно больше содержалось альбуминов и суммарного количества глобулинов по сравнению с показателями у бычков I и II гр. На фоне лечения кератоконъюнктивитов в организме бычков происходит активизация защитных сил организма, снижение эндогенной интоксикации и нормализация обменных процессов.

Вывод. Формирование клинического состояния организма и продуктивности животных обусловливается специфическим обменом веществ, а показатели белкового спектра крови — общего белка, его альбуминовой и глобулиновой фракций являются важным физиологическим подтверждением процессов, происходящих в организме при телязиозе у крупного рогатого скота, а также изменений во время лечения кератоконъюнктивитов паразитарного характера различными схемами.

1,28

 $35,78\pm0,05$

1,38

Литература

- 1. Днекешев А.К. Лечение массовых глазных заболеваний препаратом ивермек-гель в сочетании с мастимицином и ретробульбарной блокадой / А.К. Днекешев, Э.Б. Тажбаева, Е.К. Акан [и др.] // Сборник трудов материалов Седьмой Всероссийской межвузовской конференции по ветеринарной хирургии 24—25 ноября, Москва. М., 2017. С. 330—339.
- Днекешев А.К., Сивожелезова Н.А., Грязнов В.В. Применение ретробульбарной блокады как усовершенствованного метода диагностики телязиоза у крупного рогатого скота // Известия Оренбургского государственного аграрного университета. 2013. № 3 (41). С. 111–112.
- Днекешев А.К., Валиева Ж.М. Сравнительный опыт прижизненной диагностики телязиоза с применением ретробульбарной блокады у крупного рогатого скота // Наука и образование: науч.-практич. журнал ЗКАТУ им. Жангир хана. 2010. № 2 (19). С. 127–130.
 Днекешев А.К., Валиева Ж.М. Краниометрическое обо-
- Днекешев А.К., Валиева Ж.М. Краниометрическое обоснование проведения ретробульбарной блокады у крупного рогатого скота // Наука и образование: науч.-практич. журнал ЗКАТУ им. Жангир хана. 2009. № 4 (17). С. 76–80.
- Бухарин О.В., Луда А.П. Иммунологические лабораторные методы исследования крови. Оренбург: Россельхозиздат, 1972. 40 с.
- 6. Кондрахин И.П. Методы ветеринарной клинической лабораторной диагностики. Справочник. М.: КолосС, 2004. 520 с.
- Днекешев А.К. Изменение морфо-биохимических показателей крови верблюдов-бактрианов в различные репродуктивные периоды / А.К. Днекешев, Ф.Б Закирова, И.Н. Жубантаев [и др.] // Известия Оренбургского государственного аграрного университета. 2018. № 1 (69). С. 140–142.