Влияние ультрадисперсного кремния на показатели белкового обмена крови молодняка сельскохозяйственных птиц

А.С. Мустафина, аспирантка, ФГБОУ ВО Оренбургский ГАУ, ФГБНУ ФНЦ БСТ РАН; **В.Н. Никулин**, д.с.-х.н., профессор, ФГБОУ ВО Оренбургский ГАУ

Продуктивные качества птицы в значительной степени зависят от кормления, а именно содержания в рационах биологически активных веществ, в том числе и минеральных [1], которые участвуют в поддержании нормального водного баланса и

кислотно-щелочного равновесия, распределении воды в организме, генерации возбуждения в нервах и мышцах, проводимости нервных импульсов по нервным волокнам и т.д. Они входят в состав опорных тканей и соединений, богатых энергией, оказывают влияние на ферментативную активность и функции живого организма [2].

Одним из важнейших элементов полноценного кормления является минеральное питание.

Макро- и микроэлементы — необходимое условие быстрого выращивания молодняка птицы. Минеральный состав корма не всегда сбалансирован по потребности для птицы, его анализ выявляет избыток одних и недостаток других элементов. При недостатке минеральных веществ у птицы деформируется костяк, ухудшается оперение, снижаются воспроизводительные характеристики, повышается чувствительность к заболеваниям [3].

В настоящее время проводятся исследования по изучению влияния различных форм минеральных веществ и способов их введения на продуктивные и физико-химические показатели качества продукции. Одним из перспективных направлений повышения активности минералов является преобразование их в наноразмерные материалы с целью повышения физико-химической активности и биодоступности для организма животных.

Для полноценного изучения обменных процессов, протекающих в организме, и оценки эффективности использования тех или иных препаратов необходимо изучать биохимические показатели крови у подопытных птиц [4]. Особое внимание уделяется именно крови, так как она выполняет исключительно важную роль в жизнедеятельности организма, осуществляя основное свойство живой материи — обмен веществ. Омывая все клетки организма, кровь и лимфа дают им возможность потреблять кислород, питательные вещества и защищаться от патогенных микроорганизмов [5].

Поэтому **целью** нашей работы стало изучение влияния ультрадисперсного оксида кремния на биохимические показатели крови цыплят-бройлеров.

Материал и методы исследования. Эксперимент был проведён в условиях вивария ФГБНУ ФНЦ БСТ РАН. Объектом исследования были цыплята-бройлеры кросса Арбор-Айкрес. Для проведения опыта отобрали 120 цыплят-бройлеров недельного возраста и методом пар-аналогов сформировали четыре группы по 30 гол. в каждой — контрольную и три опытные. Содержание птиц, плотность посадки, температурный и световой режимы, влажность воздуха, фронт кормления и поения соответствовали рекомендациям ВНИТИП [6]. Схема проведения эксперимента представлена в таблице 1.

Дозировки 100—300 мг/кг корма выбраны с учётом проведённого анализа литературных данных, в которых отражён положительный эффект влияния кремния на ростовые и биохимические показатели цыплят-бройлеров [5, 7].

Наночастицы диоксида кремния представляют собой белый рентгеноаморфный рассыпчатый порошок без специфического запаха. Массовая доля кремния составляет не менее 99,8% по массе, хлора — не более 0,2%, d=15-25 нм, удельная поверхность -10^9 м²/г, Z-потенциал — $27\pm0,1$ мВ. Порошок произведён в ООО «Плазмотерм», г. Москва, метод получения — плазмохимический синтез.

Комбикорм готовили методом ступенчатого смешивания, наночастицы оксида кремния вводили после 45 мин диспергирования в физиологическом растворе с помощью УЗДН-2Т («НПП Академприбор», Россия) (35 кГц, 300 Вт, 10 мкА, 45 мин).

Биохимические показатели крови определяли у птиц в возрасте 21 и 42 сут. в испытательном центре ЦКП ФНЦ БСТ РАН с помощью автоматического биохимического анализатора CS-T240 («DiruiIndustrialCo., Ltd.», Китай) с использованием коммерческих биохимических наборов для ветеринарии («ДИАКОН-ДС», Россия; «Randox Laboratories Ltd», Великобритания).

Статистическую обработку полученных данных проводили с использованием программного пакета Statistica 10.0 и программного пакета «MS Excel 2010». Данные представлены в виде: среднее (X) \pm стандартная ошибка среднего (x). Достоверными считали результаты при P<0,05.

Результаты исследования. Состав крови млекопитающих и птиц отличается постоянством, поскольку только при стабильности состава внутренней среды организма возможна чёткая и бесперебойная работа его систем. Биохимические показатели крови важны при определении физиологического статуса и состояния здоровья сельскохозяйственных животных и птицы. Известно, что биохимические показатели крови у кур изменяются с возрастом [8].

В любом живом организме белковый обмен является главенствующим, а все остальные виды обмена веществ так или иначе работают на его обеспечение. В организме белки выполняют множество функций, среди которых можно выделить структурную, ферментативную, регуляторную, транспортную, двигательную, защитную, энергетическую. Особая роль принадлежит белкам плазмы, которые поддерживают осмотическое давление крови, связывают и переносят в системном кровотоке различные гидрофобные молекулы, обеспечивают защиту организма от чужеродных агентов, выполняют функцию буферных систем,

1. Схема эксперимента на цыплятах-бройлерах

	Возраст, сут.	Период исследования		
Группа		подготовительный (с 7- до 13-суточного возраста)	учетный (с 14- до 42-суточного возраста)	
Контрольная	7		OP	
I опытная	7	(OD)	$OP + 100$ мг/кг корма НЧ SiO_2	
II опытная	7	основной рацион (ОР)	OP + 200 мг/кг корма НЧ SiO ₂	
III опытная	7		$OP + 300 \text{ мг/кг корма HЧ SiO}_2$	

обеспечивают своевременный гемостаз при повреждении сосудов [9].

Белки — важнейшая часть плазмы крови [10]. При использовании ультрадисперсного оксида кремния в кормлении бройлеров установлено его положительное влияние на содержание общего белка в сыворотке крови птиц опытных групп (табл. 2). Выявлено повышение данного показателя у цыплят всех исследуемых групп с недельного до четырёхнедельного возраста на 25,29-29,10%. В 4-недельном возрасте разница в значениях общего белка в сыворотке крови бройлеров опытных групп по сравнению с аналогичным показателем у цыплят контрольной группы составляла 7,00-7,15%. Также отмечено его достоверное увеличение на 20,19% в крови цыплят III опытной гр. Около 60% всех белков плазмы приходится на долю альбумина, который играет основную роль в поддержании онкотического давления крови, а также выполняет транспортную и питательную функции, остальная часть приходится на α- и γ-глобулины и другие белки плазмы, в том числе ферменты [10]. По количеству альбуминовой фракции в сыворотке крови цыплята опытных групп также превосходили птиц контрольной группы на 1,36-1,39%, а у цыплят III опытной гр. отмечалось его достоверное увеличение на 3,05%. К 6-недельному возрасту содержание общего белка увеличилось в сыворотке крови цыплят всех групп на 1,80-10,95%, а альбуминовой фракции – на 2,36-5,21% по сравнению с 4-недельным возрастом. Это говорит о том, что чем старше становится сельскохозяйственная птица, тем интенсивнее протекает процесс биосинтеза белка в организме. К концу эксперимента содержание общего белка в крови цыплят опытных групп увеличилось на 0,71-11,58% по сравнению с аналогичным показателем у цыплят контрольной группы, а содержание альбуминовой фракции возросло только в сыворотке крови цыплят II и III опытных гр. на 7,5 и 10,05% соответственно. К окончанию учётного периода альбуминовая фракция в сыворотке крови птиц исследуемых групп составляла от 36,93 до 40,28%.

Мочевина представляет собой диамид угольной кислоты, образующийся в печени при обезвреживании аммиака, синтезируется специальной группой ферментов. Её уровень в крови — отражение баланса между скоростью синтеза в печени и скоростью выведения почками с мочой [11]. Концентрация мочевины в крови цыплят 4-недельного возраста находилась в пределах 3,17-3,63 ммоль/л, причём наибольшее значение отмечено для крови цыплят контрольной группы, а наименьшее - для крови птицы опытных групп. Стоит сказать, что к снижению данного показателя в крови цыплят опытных групп привело использование ультрадисперсного оксида кремния на протяжении двух недель эксперимента. Отмечено достоверное снижение концентрации мочевины в крови бройлеров І и III опытных гр. на 9,92 и 12,67% соответственно по сравнению с аналогичным показателем крови цыплят контрольной группы. К шестинедельному возрасту происходит снижение концентрации мочевины в крови цыплят всех исследованных групп на 1,26-10,40%. При этом отмечено достоверное уменьшение содержания мочевины в крови бройлеров I и III опытных гр. на 12,0 и 6,0% соответственно по сравнению с аналогичным показателем крови цыплят контрольной группы.

Уровень мочевой кислоты, являющейся основным конечным продуктом белкового обмена птиц [11], у недельных цыплят-бройлеров составлял 172,1 мкмоль/л. Оптимальным принято считать содержание мочевой кислоты в сыворотке крови не выше 360 мкмоль/л [11]. У птиц исследуемых групп к 28 сут. данный метаболит был выше оптимальных значений на 27—29%, что свидетельствует о напряжённости белкового обмена в организме цыплят.

2. Биохимические показатели крови цыплят-бройлеро	в (X±Sx)	
---	----------	--

П	Группа				
Показатель	контрольная	I опытная	II опытная	III опытная	
	7-e	сутки		•	
Общий белок, г/л	27,52±0,88				
Альбумин, г/л	$10,00\pm0,46$				
Мочевина, ммоль/л	$0,47\pm0,04$				
Мочевая кислота, мкмоль/л	172,1±13,08				
	28-6	е сутки			
Общий белок, г/л	34,48±0,19	34,96±0,90	34,95±0,54	35,53±0,44*	
Альбумин, г/л	12,67±0,15	13,00±0,27	14,00±0,00	14,33±0,15*	
Мочевина, ммоль/л	3,63±0,06	3,27±0,03*	$3,50\pm0,03$	3,17±0,08*	
Мочевая кислота, мкмоль/л	465,37±2,38	462,13±4,26	458,93±5,68	457,23±1,61*	
Белок/мочевина	9,45	10,69	9,99	11,20	
	42-6	е сутки			
Общий белок, г/л	35,33±0,55	36,10±0,40	35,58±0,21	39,42±0,57*	
Альбумин, г/л	13,33±0,41	13,33±0,31	14,33±0,56	14,67±0,31*	
Мочевина, ммоль/л	3,33±0,04	2,93±0,03*	3,23±0,03	3,13±0,02**	
Мочевая кислота, мкмоль/л	441,03±0,41	442,53±2,86	434,97±0,56	356,37±0,31*	
Белок/мочевина	10,80	12,32	10,91	12,59	

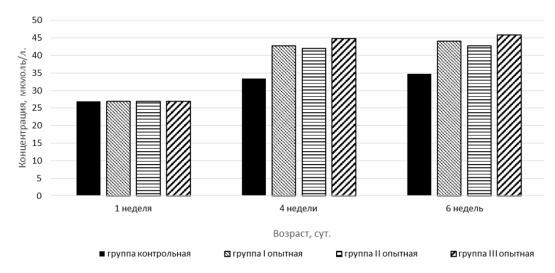


Рис. - Возрастная динамика концентрации креатинина в крови подопытных цыплят-бройлеров

К 42-суточному возрасту произошло снижение содержания мочевой кислоты в крови бройлеров всех групп. Примечательно, что в группе, цыплята которой получали ультрадисперсный оксид кремния в дозировке 300 мг/кг корма, исследуемый показатель к шестинедельному возрасту снизился до оптимальных значений.

Креатинин является конечным продуктом распада креатина, который играет важную роль в энергетическом обмене мышечной и других тканей [11]. Большая часть креатинина синтезируется в печени и транспортируется в скелетные мышцы. Концентрация креатинина в крови является довольно постоянной величиной, отражающей мышечную массу и не зависящей от кормления и других факторов. Этот показатель у птиц является дополнительным для оценки функции почек [12]. Проведённый анализ содержания креатинина в крови цыплят показал, что в недельном возрасте его концентрация составляла 26,87 мкмоль/л. На рисунке показано содержание креатинина в крови бройлеров, к 28-суточному возрасту концентрация его колебалась в пределах 33,43—44,77 мкмоль/л. К шестинедельному возрасту концентрация данного показателя незначительно выросла во всех группах на 1,66-4,10%. Наибольшее увеличение наблюдалось в крови цыплят контрольной группы.

Выводы. Анализируя результаты анализа биохимических показателей крови цыплят-бройлеров в возрасте 7, 28 и 42 сут., можно говорить о том, что скармливание ультрадисперсного оксида кремния при их выращивании оказывает положительное влияние на показатели белкового обмена в организме птицы. Оксид кремния в ультрадисперсном виде в дозировке 300 мг на 1 кг корма увеличивает концентрацию общего белка крови на 43,24% за весь период выращивания, повышает содержание альбуминовой фракции, снижает концентрацию мочевины в крови и нормализирует содержание мочевой кислоты.

Литература

- Лопатко А.М., Зиновенко А.Л. Производству комбикормов новые ориентиры // Белорусское сельское хозяйство. 2008. № 11. С. 27–30.
- Азарнова Т., Наиденский М., Бобилькова А. Гипотеза раннего развития эмбрионов // Животноводство России. 2012. № 6. С. 13–15.
- 3. Егоров И.А. Селекция сельскохозяйственной птицы и её будущее в России // Птицеводство. 2012. № 12. С. 4.
- Влияние препаратов высокодисперсных металлов на морфологические и биохимические показатели крови цыплятбройлеров / М.Я. Курилкина, Т.Н. Холодилина, Д.М. Муслюмова [и др.] // Животноводство и кормопроизводство. 2018. Т. 101. № 3. С. 93–99.
- Подобед Л.И. Влияние кремния на организм птицы // Годівля. 2014. № 7 (140). С. 11–14.
- Рекомендации по кормлению сельскохозяйственной птицы / под ред. В.И. Фисинина, Ш.А. Имангулова, И.А. Егорова [и др.]. Сергиев Посад, 2003. 144 с.
- Подобед Л. Как избавиться от артритов у бройлеров и ремонтного молодняка птицы // Птицеводство. 2016. № 2. С. 50–53
- Возрастные изменения биохимических показателей крови у мясных цыплят (gallusgallusl.) / И.А. Егоров, А.А. Грозина, В.Г. Вертипрахов [и др.] // Сельскохозяйственная биология. 2018. Т. 53 (4). С. 820–830.
- Карпенко Л.Ю., Васильева С.В. Биохимия белка: учебнометодическое пособие. СПб., 2016. 44 с.
- Кузник Б.И. Физиология и патология системы крови. Руководство для студентов лечебного, педиатрического и стоматологического факультетов. Чита, 2002. 18 с.
- Торшков А.А. Изменение биохимических показателей крови бройлеров при использовании арабиногалактана // Фундаментальные исследования. 2011. № 9. Ч. 3. С. 583–587.
- 12. Методические рекомендации по гематологическим и биохимическим исследованиям у кур современных кроссов / И.В. Насонов, Н.В. Буйко, Р.П. Лизун [и др.]. Минск, 2014. 32 с.