Влияние тонуса симпато-адреналовой и гипоталамо-гипофизарно-надпочечниковой системы на функцию кроветворных органов у собак с разной стрессовой чувствительностью

А.И. Кузнецов, д.б.н., профессор, **Т.А. Васильева**, аспирантка, ФГБОУ ВО Южно-Уральский ГАУ

Основная роль в способности сохранять постоянство внутренней среды организма и приспосабливаться к изменению внешних условий принадлежит симпато-адреналовой и гипоталамогипофизарно-надпочечниковой системам. Одним из показателей напряжения этих систем является уровень содержания гормонов в плазме крови [1–3]. В плане изучения физиологических осо-

бенностей служебных собак мы поставили перед собой **цель** — определить характер реакции их симпато-адреналовой и гипоталамо-гипофизарнонадпочечниковой систем при действии дозированного стрессового раздражителя в связи со стрессовой чувствительностью и оценить их влияние на морфологический состав крови.

Материал и методы исследования. Исследование проводили на базе центра кинологической службы УМВД России по Курганской области. Для экспериментального исследования использовали

две группы служебных собак породы немецкая овчарка в возрасте 2-6 лет. Группы собак были сформированы по уровню стрессовой чувствительности (стрессчувствительные – І гр., стрессустойчивые – II гр.), по 7 животных в каждой группе Стрессовую чувствительность определяли методом А.И. Кузнецова, Т.А. Васильевой [4]. В основу метода был взят принцип локального адаптационного синдрома (ЛАС). Известно, что особенности течения ЛАС, как привило, соответствуют характеру проявления общего адаптационного синдрома [5-8]. В качестве раздражающего вещества, вызывающего локальную реакцию, использовали 50%ный скипидар в дозе 0,05 мл. Раздражитель вводили безыгольным инъектором (МБИ-1) внутрикожно в середину наружной стороны ушной раковины.

Реакцию симпато-адреналовой и гипоталамогипофизарно-надпочечниковой систем на действие раздражителя определяли по количественному изменению в крови адреналина, норадреналина, кортизола и кортикостерона [9]. Оценку функционального состояния кроветворных органов в связи с состоянием симпато-адреналовой и гипоталамо-гипофизарно-надпочечниковой систем определяли по изменению лейкоцитарной формулы и количеству эритроцитов. Исследования уровня гормональных изменений и количественного изменения морфологического состава крови определяли общепринятыми методиками с использованием гематологического анализатора и ИФА-тестов [10].

Результаты исследования. Изменения представленных показателей симпато-адреналовой и гипоталамо-гипофизарно-надпочечниковой системы (табл. 1) были различны у животных с разной чувствительностью к стрессам после локального введения раздражителя. У собак стрессчувствительной группы в исходном состоянии содержание адреналина и норадреналина составляло $3,85\pm0,04$ и $7,80\pm0,12$ нмоль/л соответственно, кортизола — $58,02\pm1,25$ нмоль/л, кортикостерона — $25,60\pm0,81$ нмоль/л. После введения скипидара, через 24 час., количество адреналина и норадреналина изменилось в сторону увеличения соответственно на

40,5 и 16,7%, при этом показатели кортизола и кортикостерона повысились на 41,8 и 46,9% соответственно. Через 36 часов диагностировали увеличение показателей адреналина и норадреналина на 84,9 и 32,6%, а кортизола и кортикостерона – на 35,3 и 28,3%. Данные изменения свидетельствует о включении механизмов стрессовой реакции в организме данной группы собак. В дальнейшем показатели гормонального обмена снизились до первоначального значения. Следует отметить, что глюкокортикоиды демонстрировали максимальное увеличение через 24 часа, а пик активности катехоламинов наблюдался через 36 часов после локального введения скипидара. Через 72 часа наблюдали следующие значения показателей: адреналина -114,5, норадреналина -108,6, кортизола -110,7, кортикостерона -104,3%. Такие изменения являются характерными для стрессового состояния животного.

В группе стрессустойчивых животных в исходном состоянии показатель адреналина был на уровне 3,25±0,03 нмоль/л, норадреналина — 5,90±0,22 нмоль/л. Регистрировали нестабильность в показателях адреналина после внутрикожного введения раздражителя, что характеризовалось повышением его уровня через 24 часа на 30,8%, через 36 часов — на 38,8%, а в дальнейшем отмечалось снижение величины этого показателя. Изменение значений норадреналина проявилось в небольшом его снижении вплоть до 48 часов, а затем в незначительном повышении на 3,4% через 72 часа после введения скипидара.

Анализируя показатели глюкокортикоидов у стрессустойчивых собак, мы наблюдаем, что исходный уровень кортизола 56,04±1,04 нмоль/л через 24 часа изменился незначительно, а через 36 часов повысился незначительно — на 2,8%. При этом содержание кортикостерона первоначально составляло 19,25±0,75 нмоль/л, через 24 часа снизилось на 15,6%, через 36 часов повысилось в сравнении с исходным значением на 11,4%. Следует отметить, что наблюдаемая нами реакция повышения адреналина в крови свидетельствовала

1. Картина реакции гипоталамо-гипофизарно-надпочечниковой системы служебных собак на действие скипидара в дозе 0.05 мл в концентрации 50% (n=7; $X\pm Sx$)

Пока- затель, нмоль/л	Группа	Исходное значение	Период после тестирования, час.								
			24	% к ис- ходн.	36	% к ис- ходн.	48	% к ис- ходн.	72	% к ис- ходн.	
Адре-	I	3,85±0,04	5,41±0,22***	140,5	7,12±0,85***	184,9	4,01±0,13	104,2	4,41±0,04*	114,5	
налин	II	3,25±0,03	4,25±0,37	130,8**	4,51±0,38	138,8***	3,51±0,11***	108,0	3,51±0,07	108,0	
Норадре-	I	7,80±0,12*	9,10±0,21	116,7*	10,35±0,31	132,6**	9,01±0,15	115,5*	8,47±0,08*	108,6	
налин	I	5,90±0,22	5,75±0,24	97,5	5,61±0,15	95,0	5,65±0,27	95,8	6,10±0,01	103,4	
Корти-	I	58,02±1,25	82,25±1,8**	141,8	78,50±1,51**	135,3	67,75±1,68*	116,8	64,25±1,07*	110,7	
зол	II	56,04±1,04	56,10±1,12	100,1	57,61±0,80	102,8	54,61±1,51	97,4	47,81±1,46	85,3	
Кортико-	I	25,60±0,81*	37,61±0,71***	146,9	32,85±0,83**	128,3	30,51±0,91**	119,2	26,71±0,24	104,3	
стерон	I	19,25±0,75	16,25±0,82	84,4	21,45±0,41	111,4	21,21 ± 0,10	110,2	17,75±0,08	92,2	

Примечание: *Р<0,05; **Р<0,01; ***Р<0,001

о болевой реакции, которая возникает у животных на внутрикожное введение скипидара и процесс взятия крови. В целом по изменению гормонов в крови стрессустойчивых служебных собак можно говорить о высокой адаптивности организма к условиям воздействия стресс-фактора.

Разный характер реакции симпато-адреналовой и гипоталамо-гипофизарно-надпочечниковой системы у собак с разной стрессовой чувствительностью на действие дозированного вещества позволил нам наблюдать изменения морфологических показателей крови в связи с различным напряжением этих систем.

По таблице 2 видно, что после локального введения скипидара изменения морфологических показателей у животных, имеющих разную стрессовую чувствительность, разнились. После введения скипидара, через 24 часа, наблюдали повышение гематокрита на 5,2%, количества эритроцитов — на 21,8, содержания гемоглобина — на 5,8, общего количества лейкоцитов — на 13,8, нейтрофилов — 19,2%. Содержание эозинофилов снижалось на 26,2, лимфоцитов – на 12,3%. Подобные изменения показателей наблюдали и через 36 часов, при этом выше исходного значения были значения гематокрита — на 8.9%, эритроцитов — на 32.7, гемоглобина — на 5,7, общего количества лейкоцитов – на 15,2, нейтрофилов – на 14,9%. Содержание эозинофилов и лимфоцитов снизилось на 50,9 и 23,4% соответственно. Величины определяемых показателей через 72 часа были близки к исходному состоянию и составляли: гематокрит $-49.3\pm1.77\%$ (в исходном состоянии $-50.4 \pm 1.45\%$), количество эритроцитов $-178,41\pm1,69$ мл/мкл (в исходном состоянии $-5,71\pm0,18$ мл/мкл), содержание гемоглобина $-178,41\pm1,69$ г/л (в исходном состоянии $-177,92\pm1,70$ г/л), общее количество лейкоцитов $-7,31\pm0,69$ тыс/мкл (в исходном состоянии $-7,40\pm0,40$ тыс/мкл), нейтрофилов $-70,73\pm1,03\%$ (в исходном состоянии $-69,82\pm0,76\%$), эозинофилов $-5,31\pm0,39\%$ (в исходном состоянии $-5,10\pm0,99\%$), лимфоцитов $-20,95\pm2,56\%$ (в исходном состоянии $22,15\pm1,64\%$). Наблюдаемые нами изменения показателей крови отражали состояние стресса в группе стрессочувствительных собак.

В группе стрессустойчивых собак исследуемые морфологические показатели не имели ярко выраженных изменений. Но через 24 часа с момента введения скипидара наблюдалось снижение гематокрита в сравнении с первоначальным значением на 10,4% и палочкоядерных нейтрофилов — на 20,2%. Наиболее яркие изменения наблюдались в реакции показателя эозинофилов. Через 24 часа величина этого показателя повысилась на 20,2% в сравнении с исходным значением. Через 36 часов показатель эозинофилов повысился на 29,2%, а через 48 часов — на 10,8%, в дальнейшем он восстановился до первоначального уровня. Наблюдаемые изменения в крови характеризуют стрессустойчивое состояния.

Выводы. 1. У стрессчувствительных собак реакция симпато-адреналовой и гипоталамогипофизарно-надпочечниковой системы на действие дозированного стрессового раздражителя выражается достоверным повышением их тонуса, что сопровождается выраженными изменениями морфологических показателей крови, характерных для стрессового состояния.

2. У стрессустойчивых собак реакция симпатоадреналовой и гипоталамо-гипофизарнонадпочечниковой системы на действие дозированного стрессового раздражителя незначительна

2. Морфологические показатели крови служебных собак с разной стрессовой чувствительностью при действии дозированного раздражителя $(X\pm Sx)$, n=7

			Период после введения скипидара, час.							
Показатель	Группа	Исходное значение	24	% к ис- ходу	36	% к ис- ходу	48	% к ис- ходу	72	% к ис- ходу
Гематокрит, %	I	50,4±1,45	53,0±1,21*	105,2	54, 9±1,31*	108,9	53,0±1,19*	105,2	49,3±1,77	97,8
	II	53,1±1,64	47,6±1,18	89,6	49,3±1,16	92,8	52,1±1,36	98,1	51,4±1,26	96,8
Эритроциты, 10 ¹² /л	I	5,52±0,26	6,70±0,36**	121,8	7,31±0,26***	132,7	6,10±0,16*	110,9	5,71±0,18	103,6
	II	5,64±0,31	5,51±0,25	97,6	5,54±0,34*	98,2	5,52±0,28	97,8	5,51±0,25	97,6
Гемоглобин, г/л	I	178,41±0,69	188,91±2,08*	105,8	188,60±1,83*	105,7	182,42±1,20	102,2	177,92±1,70	99,8
	II	161,72±1,1	160,40±1,68	99,1	159,70±1,11*	98,8	159,0±2,04	98,3	159,70±1,39	98,8
Лейкоциты,	I	7,31±0,69	8,32±0,45**	113,81	8,42±0,35**	115,2	7,94±0,14*	108,6	7,40±0,40	101,2
109/л	II	7,71±0,25	7,61±0,05	98,7	7,71±0,21	100,0	7,83±0,99	101,5	7,30±0,92	107,6
Лимфоциты,	I	20,95±2,56	18,4±0,19	87,7	16,0±0,58**	76,6	18,58±1,03*	88,7	22,15±1,64	105,7
%	II	22,93±2,19	22,2±1,85	101,2	22,4±2,03	97,7	23,0±1,16*	100,3	23,88±1,76	104,0
Эозинофилы,	I	5,31±0,39	3,92±0,12**	73,8	2,61±0,73***	49,1	3,70±0,16**	69,6	5,10±0,99	96,0
%	II	4,44±0,29	5,34±0,70*	120,2	5,74±0,03**	129,2	4,92±0,03*	110,8	4,42±0,29	99,5
Нейтрофилы, (п/я) %	I	3,01±0,07	4,4 1±0,29***	146,5	5,3±0,03***	176,0	4,42±0,73***	146,8	2,93±0,83	97,3
	II	2,02±0,07	1,73±0,03*	85,6	1,61±0,09**	79,7	2,11±0,99	104,5	2,0±0,99	99,0
Нейтрофилы, (с/я) %	I	70,73±1,03	73,27±2,31**	103,59	76,0±3,84*	114,9	73,30±1,58	103,6	69,82±0,76	98,7
	II	70,61±1,05	70,71±1,03	100,1	70,25±0,73	99,7	69,97±0,83	99,0	69,70±1,16	98,7

Примечание: *Р<0,05; **Р<0,01; ***Р<0,001

и проявляется в незначительном повышении стрессовых гормонов, которое связаны с болевой реакцией на взятие крови. При такой реакции отсутствуют изменения функционального состояния кроветворных органов.

Литература

- 1. Городецкая И.В. Роль тиреоидных гормонов в адаптивных реакциях организма на антагонистические стрессоры // Патологическая физиология. 2000. № 3. С. 32.
- 2. Нотова С.В., Дускаева А.Х., Мирошников С.В. Оценка влияния пищевого стресса на психофизиологические и метаболические показатели // Вестник Оренбургского государственного университета. 2012. № 10 (146). С. 54—57.
- 3. Санин А.В. Понятие стресса и стрессорных факторов // Ветеринарная клиника. 2005. № 6. С. 8–11.
- 4. Кузнецов А.И., Васильева Т.А. Способ определения стрессовой чувствительности служебных собак // Актуальные проблемы в ветеринарии, биологии и экологии: матер. междунар. науч.-практич. конф., посвящ. 100-летию со дня

- рождения проф. А.В. Есютина. Троицк: Изд-во ЮУрГАУ,
- 2016. С. 40–45. 5. Кузнецов А.И. Характеристика обмена веществ у стрессчувствительных свиноматок в условиях промышленной технологии // Свиноводство. 1990. № 4. С. 4. Кузнецов А.И., Сунагатуллин Ф.А. Способ оценки по
- стрессчувствительности // Свиноводство. 1991. № 1. С. 6.
- Мифтахутдинов А.В., Терман А.Н. Методологические основы определения стрессовой чувствительности кур путём моделирования локального адаптационного синдрома // Актуальные и новые направления сельскохозяйственной науки: матер. VIII междунар. науч.-практич. конф. молодых учёных, посвящ. 75-летию проф. А.Т. Фарниева. Ч. 2. Владикавказ: Изд-во «Горский госагроуниверситет», 2012. C. 120-122
- Мифтахутдинов А.В. Экспериментальные подходы к диагностике стрессов в птицеводстве (обзор) // Сельскохозяйственная биология. 2014. № 2. С. 20—30. Горизонтов П.Д., Белоусова О.И., Федотова М.И. Стресс и
- система крови. М.: Медицина, 1983. 239 с.
- Джексон М. Ветеринарная клиническая патология. Введение в курс / перев. Т. Лисицыной. М.: Аквариум-Принт, 2009. 384 c.