Комплексное лечение коронавирусного гастроэнтерита у котят: клинический случай

С.Э. Жавнис, к.в.н., ветеринарная клиника «ОРИКС»; **И.О. Переслегина**, вет. врач, ветеринарная клиника «ГорВетМедицина»; **А.А. Санина**, н.с., ФГБУ НИЦЭМ им. Н.Ф. Гамалеи Минздрава РФ

Коронавирусный гастроэнтерит относится к числу инфекций, часто поражающих домашних кошек. Возбудитель заболевания Felinecoronavirus (FCoV) внедряется в организм кошки орально или назально, как правило, с частичками фекалий от больного животного. Особенно распространено заболевание в кошачьих питомниках и других местах массового содержания кошек. Штаммы FCoV традиционно подразделяются на два типа: кишечный, вызывающий гастроэнтерит (Feline enteric coronavirus – FECV), и вирус инфекционного перитонита (Feline infectious peritonitis virus - FIPV) [1]. Однако в последние годы выяснилось, что системную инфекцию могут вызывать все штаммы FCoV [2]. Одной из главных особенностей FCoV является его высокая способность мутировать, что в ряде случаев приводит к возникновению кошачьего инфекционного перитонита, практически не поддающегося лечению.

Материал, методы, результаты исследования. Терапия коронавирусного гастроэнтерита у кошек направлена в первую очередь на угнетение жизнедеятельности инфекционного агента, снятие симптомов воспаления слизистых ЖКТ и восстановление жизненных сил животного [3]. С этой целью используют противовирусные и иммуномодулирующие препараты, гастропротекторы, противорвотные, противовоспалительные и антиоксидантные средства [4, 5]. Если лечение начато на ранней стадии, то прогноз, как правило, благоприятный.

Клинический случай коронавирусного гастроэнтерита был рассмотрен на примере котёнка (пол кошка) в возрасте около 1 мес., весом 560 г, подобранного на улице. З дня котёнок находился в домашних условиях, поступил на приём с жалобой на понос жёлтого цвета с кровью. У животного

аппетит ранее присутствовал (подкармливали на улице). Владельцы самостоятельно дали глистогонное, но состояние котёнка не улучшилось. В течение двух суток животное отказывалось от корма, было отмечено его угнетённое состояние, анемичность видимых слизистых оболочек. При пальпации живот у котёнка был мягкий, безболезненный, ректальная температура составляла 38,1°C. В трахее и лёгких хрипы не обнаруживались. В ветклинике у котёнка был взят общий анализ крови, сдан инфекционный гастроэнтеральный профиль (коронавирусный гастроэнтерит – положительно, лямблиоз – отрицательно, панлейкопения - отрицательно, токсоплазмоз - отрицательно). Результаты ОКА представлены в таблице 1. У животного был диагностирован коронавирусный гастроэнтерит.

Больному котёнку было назначено следующее лечение.

- 1. Раствор Рингера Локка внутривенно капельно по бабочке, 20 мл, 2 раза в день первые три дня терапии, утро/вечер + 3 мл аминокапроновой кислоты.
- 2. Амоксициллин, 0,1 мл, подкожно через день, 1 раз в сутки общим курсом 3 инъекции.
- 3. Гамапрен, 0,5 мл, подкожно 1 раз в день, 10 лней подряд.
- 4. Гамавит, 1 мл, внутривенно 2 раза в день в первые три дня терапии, далее подкожно, 2 раза в день, до 10 дней.
- 5. Максидин, 0,3 мл, подкожно, 1 раз в день, 5 дней подряд.
- 6. Этамзилат, 0,2 мл, внутримышечно, 2 раза в день, 3 дня подряд.
- 7. Отвар (тёплый) крапива ромашка зверобой, 5 мл перорально, 3 раза в день, 7 дней.
- 8. Фоспренил ректально, 2 мл (тёплый), 1 раз в день в виде глубокой микроклизмы, 5 дней.
- 9. Вийо для котят, перорально, по 1/2 пакетика с утра, 1 раз в день, 2 недели + лактобифадол по инструкции.

1. Общий анализ крови

Параметр	Норма	Измерено до лечения	Измерено через 3 недели
(WBC) Лейкоциты, ×109 л	5,5–19,5	20,4	17,4
(RBC) Эритроциты, $\times 10^{12}$ л	6,6–9,4	5,9	6,9
(HGB) Гемоглобин, г/л	80–150	91,6	111
(НСТ) Гематокрит, %	30–45	34,9	39,2
(MCV) Средний объём эритроцита, fL	41–56,2	59,1	56,8
(МСН) Среднее содержание гемоглобина в эритроците, рд	11–17	15,5	16,1
(МСНС) Средняя концентрация гемоглобина в эритроците, g/dl	19,5–34,8	26,5	28,3
(RDW) Анизоцитозэритроцитов, %	8,3±0,87	8,6	8,8
(PLT) Тромбоциты, ×109/л	150-400	188	164
СОЭ, мм/час	2,5–3,5	7,5	3,5

\sim	TIT U	
,	Лейког	namma
4.	JICHKOI	Dawinia

Параметр	Норма,	Измерено до лече- ния, %	Измерено через 3 недели
Базофилы	0-1	0	0
Эозинофилы	2–8	3	3
Нейтрофильная группа:			
Миелоциты	0	0	0
Юные	0-1	0	0
Палочкоядерные	3–9	11	6
Сегментоядерные	40–68	67	55
Лимфоциты	36–51	18	34
Моноциты	1–5	1	2

Котёнка кормили консервами Хиллсі/d (разведённые тёплой кипяченой водой) и заменителем кошачьего молока Беафар. Кормили часто, но понемногу (5—6 раз в день, чередуя).

В 1-й день терапии котенок стал ползать, к вечеру двигательная активнось немного повысилась. Понос был два раза, но оба раза с кровью. Кормили животное принудительно. Ректальная температура составляла 38,1°С.

На 2-й день терапии кал у животного был слабо оформлен, но без крови, жёлтого цвета, мазеобразной консистенции. Аппетит у котёнка отсутствовал, кормили принудительно. Температура 37,9°С. Животное было заметно подвижнее, лихо удирало от уколов.

В 3-й день терапии котёнок отказался есть Хиллсі/d, но сам поел детское питание Тёма, заменитель молока пил из бутылочки без нареканий (раньше сопротивлялся). Кала не было. Температура составляла 38,5°C.

На 4-й день терапии кошечка стала самостоятельно лакать Вийо, просила добавки. Детское питание ела с удовольствием. Впервые за несколько дней кал у животного был оформленный и не содержал крови, животное опорожнилось только 1 раз за сутки. Но при этом температура тела была 38,4°C.

На 5-й день терапии кал у котёнка был с утра, оформленный, без крови, светло-коричневого цвета. Животное ело всё, что давали. Кошечка начала агрессивно реагировать (шипеть) на инъекции. Играла. Владельцы животного были поставлены в известность о необходимости довести курс лечения до конца, но самостоятельно.

Через три недели был назначен повторный приём котёнка в клинике. Результаты повторного общего анализа крови показали, что все нарушенные в начальной стадии заболевания показатели (число эритроцитов, палочкоядерных нейтрофилов, СОЭ) вернулись к норме (табл. 1 и 2). Котёнок чувствовал себя хорошо, весил 850 г (при поступлении — 560 г), температура была равна 38,7°С. Животное имело отличный аппетит, играло. Кал у котёнка был оформленный, без крови. Диагностировано клиническое выздоровление.

Использованные в данной схеме лечения препараты фоспренил, гамапрен и максидин обла-

дают как иммуномодулирующим, так и прямым противовирусным действием, что подтверждено при лечении вирусных заболеваний разной этиологии [6-10]. Рецептором коронавируса *FECV*, вызывающего гастроэнтерит у кошек, служит мембранная металлопротеаза-аланиламинопептидаза, или аминопептидаза N (APN)/CD13, экспрессия которой у всех типов клеток регулируется Th1 цитокинами и повышается под действием IFN-г и IL-4 [11]. Дополнительно использованный в терапевтической схеме препарат гамавит обладает свойствами метаболика, гепатопротектора и детоксиканта [12]. Показано повышение терапевтической эффективности данных препаратов при совместном применении [13], в частности, фоспренил, гамавит и максидин, эффективные при лечении кошек от панлейкопении, калицивироза и ринотрахеита, иногда называют «кошачьей тройкой» [13].

Немаловажно также наличие у препаратов на основе фосфорилированных полипренолов (фоспренил и гамапрен) противовоспалительных и антиоксидантных свойств [14, 15]. Все эти свойства обусловливают клиническуюэффективность данных препаратов (длительная ремиссия и улучшение качества жизни) при кошачьем коронавирусном перитоните [5, 13]. Ещё один препарат на основе фосфорилированных полипренолов, Polyprenyl Immunostimulant, разработанный в США, позволяет добиваться ремиссии у кошек при терапии сухой (неэкссудативной) формы FIP [16]. Для FIP характерен феномен антителозависимого усиления вирусной инфекции [17]. Аналогичное явление свойственно и для ряда других, в частности, флавивирусных инфекций, при которых показана терапевтическая эффективность фоспренила и гамапрена [18]. Для дальнейшего выяснения механизма действия указанных препаратов при коронавирусных инфекциях целесообразно изучить их возможное влияние на экспрессию мембранной аминопептидазы N, служащей рецептором для коронавирусов.

Вывод. Предложенная схема комплексной терапии коронавирусного гастроэнтерита сокращает сроки выздоровления, экономически оправдана и клинически эффективна.

Литература

- 1. Санин А.В., Липин А., Зинченко Е. Ветеринарный справочник традиционных и нетрадиционных методов лечения кошек. М.: Центрполиграф, 2004. 602 с.
- Hartmann K (2018): Coronavirus Infections (Canine and Feline), including Feline Infectious Peritonitis. In: Ettinger SJ, Feldman EC, Côté E (Eds.): Textbook of Veterinary Internal Medicine. Elsevier, St. Louis, 983–991.
- Бажибина Е.Б. Алгоритм диагностики инфекционных и инвазионных заболеваний кошек // Российский ветеринарный журнал. Мелкие домашние животные. 2011. № 2. С. 4—12.
- Галицкая А.Г. Изучение эффективности применения имунофана и ронколейкина при лечении коронавирусного гастроэнтерита у кошек / А.Г. Галицкая, Л.А. Демидова, Т.С. Елизарова [и др.] // Аллея науки. 2018. Т. 2. № 6 (22). С. 217–220.
- Рахманина Н.А. Клинико-эпизоотологические особенности и диагностика инфекционного перитонита кошек: автореф. ... дис. канд. вет. наук. М., 2007. 24 с.

- Гордеева Е.В. Папилломатоз ротовой полости собак новый подход к лечению / Е.В. Гордеева, И.К. Васильев, А.Н. Наровлянский [и др.] // Российский ветеринарный журнал. Мелкие домашние животные. 2008. № 2. С. 15–17.
- Морапренилфосфаты подавляют размножение вируса энцефаломиелита Тейлера и накопление вирусного белка VP3 в чувствительных кульгурах клеток ВНК-21 и P388D1 / Т.Н. Кожевникова, Е.Г. Викторова, В.Г. Козлов [и др.] // Журнал микробиологии, эпидемиологии и иммунобиологии. 2007. № 3. С. 26—30.
- Санин А.В., Гордеева Е.В., Кожевникова Т.Н. Применение Гамапрена при лечении вирусных инфекций у кошек // Ветеринария Кубани. 2009. № 6. С. 29–30.
- Клиническая эффективность Гамапрена® при калицивирусной инфекции кошек / А.В. Санин, А.Н. Наровлянский, А.В. Пронин // Ветеринария. 2018. № 5. С. 25–31.
- Клиническая эффективность Гамапрена® при панлейкопении кошек: контролируемое исследование / А.В. Санин, В.В. Анников, Л.В. Анникова [и др.] // Ветеринария и кормление. 2018. № 5. С. 45–48.
- Tani K., Ogushi F., Huang L., Kawano T., Tada H., Hariguchi N., and SaburoS. CD13/aminopeptidase N, a Novel Chemoattractant for T Lymphocytes in Pulmonary Sarcoidosis. Am. J. Respir. Crit. Care Med., Vol 161. 2000. pp. 1636–1642.
- Коррекция функциональной активности перитонеальных макрофагов мышей фоспренилом и гамавитом при введении высоких доз альфа-токсина Staphylococcusaureus / Л.Г. Зайцева, В.А. Бехало, И.К. Васильев [и др.] // Журнал микробиологии, эпидемиологии и иммунобиологии. 2005. № 6. С. 51–57.

- Сравнение двух схем лечения панлейкопении кошек / И.О. Переслегина, Т.С. Дубровина, Т.Ю. Клинцова [и др.] // Российский ветеринарный журнал. Мелкие домашние животные. 2017. № 5. С. 24–28.
- 14. Фосфорилированные полипренолы новый класс соединений с противовоспалительной и бронколитической активностью / И.В. Ганшина, Г.Ф. Судьина, В.Ю. Санина [и др.] // Инфекция и иммунитет. 2011. Т. 1. № 4. С. 355—360.
- Изучение антиоксидантных свойств Фоспренила в различных биологических тест-системах / А.В. Санин, А.Н. Наровлянский, А.В. Пронин [и др.] // Российский ветеринарный журнал. Мелкие домашние животные. 2017. № 10. С. 28—31.
 Legendre A.M., Kuritz T., Galyon G., Baylor V.M., Heidel R.E.
- Legendre A.M., Kuritz T., Galyon G., Baylor V.M., Heidel R.E. Polyprenyl Immunostimulant Treatment of Cats with Presumptive Non-Effusive Feline Infectious Peritonitis In a Field Study. Front Vet Sci. 2017 Feb 14;4:7. https://doi.org/10.3389/ fvets.2017.00007.
- 17. Takano T., Katada Y., Moritoh S., Ogasawara M., Satoh K., Satoh R., Tanabe M., Hohdatsu T. Analysis of the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection: aminopeptidase N is not important and a process of acidification of the endosome is necessary. // J Gen Virol., 2008; 89(Pt 4): 1025–1029.
- 18. Экспериментальное исследование феномена антителозависимого усиления инфекционности вируса клещевого энцефалита invitro / С.В. Ожерелков, Е.С. Калинина, Т.Н. Кожевникова [и др.] // Журнал микробиологии, эпидемиологии и иммунобиологии. 2008. № 6. С. 39–43.