Биохимические и гематологические показатели крови коров-первотёлок при использовании в кормлении зерновой патоки

А.В. Перевозчиков, аспирант, **С.Л. Воробьёва**, д.с.-х.н., **И.М. Мануров**, к.с.-х.н., ФГБОУ ВО Ижевская ГСХА

Полноценное кормление сельскохозяйственных животных — это одно из главных условий увеличения уровня производства продукции животноводческой отрасли. Составление сбалансированного рациона по всем необходимым питательным элементам позволяет раскрыть генетический потенциал животных и увеличить их уровень продуктивности [1].

Кровь является индикатором внутренний среды организма и играет жизненно важную роль. Основная функция крови как свойства живой материи — это обмен веществ. Клинические, гематологические и биохимические свойства крови отражают жизнедеятельность организма, состояние его физиологического статуса и здоровье животного, а также динамику изменения продуктивности и состояние обмена веществ [2, 3].

По составляющим элементам крови судят о всех показателях жизнедеятельности животных. Нарушение обмена веществ в любом возрастном периоде животных отражается на биохимических элементах крови. На состояние крови оказывает влияние и состав кормового рациона животных и введение различных кормовых добавок [4—6].

В связи с тем, что кровеносная система первой реагирует на изменения условий кормления и содержания животных, периодическое исследование биохимического и гематологического состояния крови позволяет оперативно определять нарушения обменных процессов в организме [7].

Один из важных показателей крови — это глюкоза, которая является главным источником энергии, оказывающим влияние на интенсивность обмена веществ в организме. Понижение уровня сахара в крови коров является следствием образования молочного жира в период интенсивной лактации. Гипогликемия может также возникать при недостатке в кормах легко усвояемых углеводов, особенно при высококонцентратном типе кормления.

Одним из вариантов решения проблемы дефицита легко усвояемых углеводов в рационе крупного рогатого скота является введение зерновой патоки.

Материал и методы исследования. ГУП УР «Пихтовка» Воткинского района Удмуртской Республики закупило экспериментальное оборудование Шарканского РТП УЖК-1000 для производства зерновой патоки. В качестве основной культуры для выработки зерновой патоки использовали рожь, так как эта культура занимает большую часть посевных площадей предприятия (40%). Влияние патоки на продуктивность животных изучали в период 2017—2018 гг.

На предприятии содержится крупный рогатый скот холмогорской породы. Способ содержания — привязный. Опытные группы подбирали согласно утверждённой методике методом пар-аналогов по 10 гол. в каждой. Подобрали три группы коровпервотёлок холмогорской породы, при этом учитывали живую массу, состояние здоровья, физиологическое состояние и другие признаки.

Животным контрольной группы в течение лактации выдавали основной рацион. Коровам I опытной гр. в период раздоя вводили свекло-

1	Cyour	иорипония	подопытных	WILDOWILLIN
Ι.	CXCMa	кинэкмиох	подопытных	животных

Группа	Количество, гол.	Период использования	Кормление
Контрольная	10	раздой лактации	Основной рацион (ОР)
I опытная	10	раздой лактации	OP + свекловичную мелассу 0,4 кг
II опытная	10	раздой лактации	OP + 3 кг зерновой патоки

2. Биохимические показатели крови коров-первотёлок холмогорской породы до использования в рационе зерновой патоки $(X\pm Sx)$

Показатель	Группа			
Показатель	контрольная	I опытная	II опытная	
Общий белок, г/л	73,41±1,14	71,84±0,98	75,45±1,21	
Альбумины, г/л	34,5±1,23	33,7±1,62	$36,4\pm1,34$	
Глобулин, %	$38,91\pm0,89$	38,14±1,12	$39,05\pm1,21$	
Белковый индекс	$0,89\pm0,02$	0.88 ± 0.03	$0,93\pm0,04$	
Са, моль/л	$2,62\pm0,08$	2,87±0,12	$2,54\pm0,07$	
Р, моль/л	$1,93\pm0,10$	$1,81\pm0,13$	$1,89\pm0,08$	
Ca/P	1,35	1,59	1,35	
Глюкоза, ммоль/л	2,34±0,14	2,41±0,12	$2,25\pm0,16$	
АЛТ, МЕ/л	24,36±2,73	26,81±3,11	$25,34\pm2,65$	
ACT, ME/л	96,30±6,33	98,51±7,42	$97,44\pm7,92$	

вичную мелассу дозой 0,4 кг, II опытной гр. в аналогичный период вводили в рацион зерновую патоку в количестве 3 кг (табл. 1). Зерновая патока вносилась через миксер, а свекловичная — с помощью лейки непосредственно на корма.

В ходе эксперимента изучали биохимические и гематологические показатели крови и уровень молочной продуктивности животных. Анализ показателей крови определяли в лаборатории ФГБОУ ВО Ижевская ГСХА. Весь полученный цифровой материал был обработан при помощи статистических программ.

Результаты исследования. Клинические показатели крови анализировали как до постановки опыта, так и в период кормления животных при введении в рацион зерновой патоки (табл. 2, 3).

Полученные результаты анализа крови по биохимическим показателям соответствовали нормативным показателям, что свидетельствовало о клинически здоровых животных опытных групп. При анализе содержания глюкозы зафиксировано, что в крови животных всех групп значения показателя находились на минимальной границе нормы (2,30) - 2,25-2,41 ммоль/л. Однако соотношение кальция и неорганического фосфора в крови коров II опытной и контрольной групп составляло 1,35, что было ниже нормы (1,5-2:1) и свидетельствовало о недостатке минерала кальция.

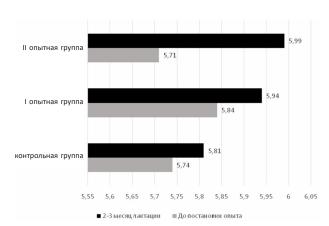


Рис. 1 – Графическое изображение изменения эритроцитов в крови коров, $10^{12}/\pi$

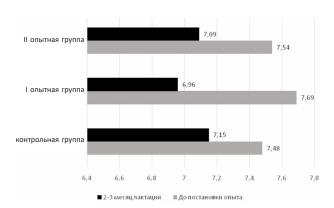


Рис. 3 – Графическое изображение изменения лейкоцитов в крови коров, $10^9/\pi$

После введения в рацион I опытной гр. свекловичной мелассы в количестве 0,4 кг и II опытной гр. зерновой патоки в количестве 3 кг произошли незначительные изменения в показателях крови коров. Так, количество глюкозы в крови животных опытных групп увеличилось до 2,61 и 2,97 ммоль/л, что было больше, чем в контрольной группе, на 0,33 и 0,69 ммоль/л соответственно.

Содержание общего белка в сыворотке крови подопытных животных соответствовало норме и находилось в пределах 72,77—78,48 г/л. В результате проведённого исследования превышение нормативных показателей глобулинов не зафиксировано, и границы это показателя в сыворотке крови коров анализируемых групп составляли 37,45—39,87%. Белковый индекс, т.е. соотношение фракции белка альбуминов и глобулинов, также соответствовал физиологической норме и составлял 0,91—0,97.

Количество кальция и неорганического фосфора также находилось в пределах нормы, составляя 2,74—2,85 и 1,87—1,82 ммоль/л соответственно. Статистически достоверных различий по этим показателям не было зафиксировано.

Динамика изменения гематологических показателей (эритроциты, лейкоциты и гемоглобин) у подопытных животных представлена на рисунках 1, 2, 3.

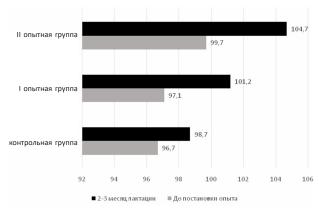


Рис. 2 – Графическое изображение изменения гемоглобина в крови коров, г/л

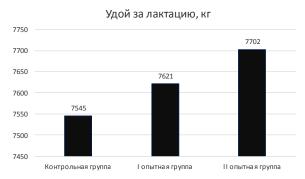


Рис. 4 – Удой коров-первотёлок за 305 дней лакташии

3. Биохимические показатели крови коров-первотёлок холмогорской породы на 2—3-м месяце лактации (X±Sx)

Показатель	Группа			
Показатель	контрольная	І опытная	II опытная	
Общий белок, г/л	72,77±1,05	74,97±1,16	78,48±1,85	
Альбумины, г/л	35,32±1,45	35,74±1,87	38,61±1,56	
Глобулин, %	37,45±1,01	39,23±1,17	39,87±1,08	
Белковый индекс	$0,94\pm0,01$	$0,91\pm0,02$	$0,97\pm0,02$	
Са, моль/л	$2,74\pm0,07$	$2,84\pm0,11$	$2,85\pm0,09$	
Р, моль/л	$1,84\pm0,12$	$1,82\pm0,08$	$1,87\pm0,05$	
Ca/P	1,48	1,56	1,52	
Глюкоза, ммоль/л	$2,28\pm0,14$	2,61±0,12	2,97±0,16	
АЛТ, МЕ/л	25,54±1,89	27,5±2,74	29,61±3,14	
АСТ, МЕ/л	95,13±5,74	97,54±6,79	96,23±7,54	

Существенных изменений эритроцитов в крови анализируемых животных не выявлено. Все по-казатели находились в пределах физиологической нормы.

Наблюдалось повышение гемоглобина в крови коров II опытной гр. в сравнении со значениями показателя в крови сверстниц контрольной гр. на 6,0 г/л, однако полученные данные статистически недостоверны. Повышение данного показателя в крови особей всех анализируемых групп свидетельствовало об увеличении интенсивности окислительно-восстановительных процессов в организме коров в период лактации.

Существенных изменений количества лейкоцитов в крови подопытных животных не зафиксировано.

Уровень молочной продуктивности у подопытных животных за 305 дней лактации представлен на рисунке 4. Максимальная молочная продуктивность коров-первотёлок за 305 дней лактации зафиксирована у коров II опытной гр. с использованием зерновой патоки, производимой в ГУП УР «Пихтовка» Удмуртской Республики, и составила 7702,0 кг, что было больше, чем у коров контрольной гр. на 157 кг, или 2,1%, достоверно с вероятностью Р>0,95. Коровы, получавшие

свекловичную патоку, занимали промежуточное положение по анализируемым показателям. Удой за лактацию у коров-первотёлок І опытной гр. составлял 7621 кг, что было больше чем в контроле на 176 кг, но меньше чем во ІІ опытной гр. на 81 кг.

Вывод. Введение в рацион коров-первотёлок холмогорской породы зерновой патоки, производимой на предприятии ГУП УР «Пихтовка» Удмуртской Республики, позволило увеличить уровень продуктивности коров до 7702,0 кг, или на 2,1%, в сравнении с показателями животных контрольной группы. Анализ биохимических и гематологических показателей крови показал незначительное повышение сахара в крови животных и гемоглобина, что указывает на увеличение окислительно-восстановительных процессов в организме.

Литература

- Кислякова Е.М. Кормовая база залог эффективного ведения молочного скотоводства Удмуртской Республики / Е.М. Кислякова, Ю.В. Исупова, С.Л. Воробьева [и др.] // Учёные записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана. 2014. Т. 218. № 2. С. 135—140.
- Лунегова И.В. Гематологические и биохимические показатели крови телят при скармливании «Борисфен энерджи» // Международный вестник ветеринарии. 2010. № 3. С. 59–62.
- Тихонова Е.М., Матвеев В.М., Мухина Н.В. Влияние натуральной кормовой добавки «МFEED» на клиникобиохимические показатели крови у телят // Вопросы нормативно-правового регулирования в ветеринарии. 2010. № 4. С. 192—193.
- 2010. № 4. С. 192—193.

 4. Москвина А.С. Изменение морфофизиологических показателей крови телят с возрастом и в процессе вакцинации // Российский ветеринарный журнал. Сельскохозяйственные животные. 2012. № 1. С. 28—30.
- Сафина Э.Ф., Гизатуллина Ф.Г., Гизатуллин И.А. Влияние кормовой добавки «Гувитан-С» на морфологические и биохимические показатели крови коров // Учёные записки Казанской государственной академии ветеринарной медицины им. Н.Э. Баумана, 2012. Т. 210. С. 195–200.
- Анисова Н.И., Овчинников А.А. Изменения показателей крови телят молочного периода выращивания при использовании в рационе кормовой добавки «Ампробак» // Известия Оренбургского государственного аграрного университета. 2012. № 2 (34). С. 129–131.
- Исламов Р.Р. Изменение биохимических показателей сыворотки крови коров чёрно-пёстрой породы при скармливании им консервированного сенажа // Известия Оренбургского государственного аграрного университета. 2019. № 1 (75). С. 172–175.